
Analysis, Optimisation and
Debugging of BPMN Processes

PhD Defended by Quentin NIVON before a jury composed of:

● Pr. Olivier BARAIS, Examiner
● Pr. Remco DIJKMAN, Examiner
● Pr. Massimo MECELLA, Reviewer
● Pr. Pascal POIZAT, Reviewer
● Pr. Claudia RONCANCIO, Examiner
● Pr. Gwen SALAÜN, Supervisor

BPMN stands for Business Process Model and Notation.
But what is a business process?

A Little Bit of History: BPMN

1

BPMN stands for Business Process Model and Notation.
But what is a business process?

“A business process [...] is a collection of related, structured activities
or tasks performed by people or equipment in which a specific
sequence produces a service or product (that serves a particular
business goal) for a particular customer or customers”

A Little Bit of History: BPMN

1

https://en.wikipedia.org/wiki/Task_(project_management)

According to history, the first man to have ever evokated the term
“business process” is the scottish economist Adam Smith in 1776.

Adam Smith

A Little Bit of History: Adam Smith

2

According to history, the first man to have ever evokated the term
“business process” is the scottish economist Adam Smith in 1776.

“One man draws out the wire; another straights it; a
third cuts it; a fourth points it; a fifth grinds it at the
top for receiving the head; to make the head requires
two or three distinct operations; to put it on is a peculiar
business; to whiten the pins is another ... and the
important business of making a pin is, in this manner,
divided into about eighteen distinct operations, which, in
some manufactories, are all performed by distinct
hands, though in others the same man will sometimes
perform two or three of them.”

In [Smith1776], he described the production of
a pin as follows:

Adam Smith

A Little Bit of History: Adam Smith

2

Frederick Winslow Taylor

➢ standardization of processes
➢ systematic training
➢ clear definition of the roles of

management and employees

A Little Bit of History: …and His Successors

3

Frederick Winslow Taylor

Geary A. Rummler

Thomas H. Davenport

Michael Hammer

James Champy

Wil van der Aalst

and others
➢ standardization of processes
➢ systematic training
➢ clear definition of the roles of

management and employees

A Little Bit of History: …and His Successors

3

This desire to provide a rigorous, unified definition of business processes
paved the way to the creation of a new discipline: the business process
management.

A Little Bit of History: Business Process Management

4

This desire to provide a rigorous, unified definition of business processes
paved the way to the creation of a new discipline: the business process
management.
This holistic discipline encompasses all the fields related to business
processes, such as:

A Little Bit of History: Business Process Management

4

Process
optimisation

This desire to provide a rigorous, unified definition of business processes
paved the way to the creation of a new discipline: the business process
management.
This holistic discipline encompasses all the fields related to business
processes, such as:

A Little Bit of History: Business Process Management

4

Process
discovery

Process
optimisation

This desire to provide a rigorous, unified definition of business processes
paved the way to the creation of a new discipline: the business process
management.
This holistic discipline encompasses all the fields related to business
processes, such as:

A Little Bit of History: Business Process Management

4

Process
discovery

Process
measurement

Process
optimisation

This desire to provide a rigorous, unified definition of business processes
paved the way to the creation of a new discipline: the business process
management.
This holistic discipline encompasses all the fields related to business
processes, such as:

A Little Bit of History: Business Process Management

4

Process
discovery

Process
measurement

Process
optimisation

Process
automation

This desire to provide a rigorous, unified definition of business processes
paved the way to the creation of a new discipline: the business process
management.
This holistic discipline encompasses all the fields related to business
processes, such as:

A Little Bit of History: Business Process Management

4

Process
discovery

Process
measurement

Process
analysis

Process
optimisation

Process
automation

This desire to provide a rigorous, unified definition of business processes
paved the way to the creation of a new discipline: the business process
management.
This holistic discipline encompasses all the fields related to business
processes, such as:

A Little Bit of History: Business Process Management

4

Process
discovery

Process
measurement

Process
modelling

Process
analysis

Process
optimisation

Process
automation

This desire to provide a rigorous, unified definition of business processes
paved the way to the creation of a new discipline: the business process
management.
This holistic discipline encompasses all the fields related to business
processes, such as:

A Little Bit of History: Business Process Management

4

Process
discovery

Process
measurement

Process
modelling

Process
analysis

Process
improvement

Process
optimisation

Process
automation

This desire to provide a rigorous, unified definition of business processes
paved the way to the creation of a new discipline: the business process
management.
This holistic discipline encompasses all the fields related to business
processes, such as:

A Little Bit of History: Business Process Management

4

A Little Bit of History: Business Process Management

This desire to provide a rigorous, unified definition of business processes
paved the way to the creation of a new discipline: the business process
management.
This holistic discipline encompasses all the fields related to business
processes, such as:

Process
discovery

Process
measurement

Process
modelling

Process
analysis

Process
improvement

Process
optimisation

Process
automation

4

The term business process modelling was coined in the 1960s by Stanley
Williams, but people were interested in modelling processes years before.

A Little Bit of History: How to Model a Process?

5

The term business process modelling was coined in the 1960s by Stanley
Williams, but people were interested in modelling processes years before.

Gantt chart, 1910-15

A Little Bit of History: How to Model a Process?

5

The term business process modelling was coined in the 1960s by Stanley
Williams, but people were interested in modelling processes years before.

Flowchart, 1921

Gantt chart, 1910-15

A Little Bit of History: How to Model a Process?

5

The term business process modelling was coined in the 1960s by Stanley
Williams, but people were interested in modelling processes years before.

Flowchart, 1921

Functional flow block
diagram (FFBD), 195X

Gantt chart, 1910-15

A Little Bit of History: How to Model a Process?

5

The term business process modelling was coined in the 1960s by Stanley
Williams, but people were interested in modelling processes years before.

Flowchart, 1921

Functional flow block
diagram (FFBD), 195X Control-flow diagram

(CFD), 195X

Gantt chart, 1910-15

A Little Bit of History: How to Model a Process?

5

The term business process modelling was coined in the 1960s by Stanley
Williams, but people were interested in modelling processes years before.

Flowchart, 1921

Functional flow block
diagram (FFBD), 195X Control-flow diagram

(CFD), 195X

Gantt chart, 1910-15

PERT diagram, 195X

A Little Bit of History: How to Model a Process?

5

The term business process modelling was coined in the 1960s by Stanley
Williams, but people were interested in modelling processes years before.

Flowchart, 1921

Functional flow block
diagram (FFBD), 195X Control-flow diagram

(CFD), 195X

Gantt chart, 1910-15

PERT diagram, 195X

IDEF diagram, 197X

A Little Bit of History: How to Model a Process?

5

More recently, another notation, called Business Process Management
Notation (BPMN) [OMG2011], emerged, and became rapidly widely used
by companies and institutions.

A Little Bit of History: BPMN

6

More recently, another notation, called Business Process Management
Notation (BPMN) [OMG2011], emerged, and became rapidly widely used
by companies and institutions.

A Little Bit of History: BPMN

6

➢ A workflow-based notation created in 2004 by the Business Process

Management Initiative (BPMI) and the Object Management Group

(OMG).

But what is BPMN?

7

➢ It aims at representing business processes in a way that is

understandable for both experienced and novice users.

➢ A workflow-based notation created in 2004 by the Business Process

Management Initiative (BPMI) and the Object Management Group

(OMG).

But what is BPMN?

7

But what is BPMN?

➢ It aims at representing business processes in a way that is

understandable for both experienced and novice users.

➢ An ISO/IEC standard since version 2.0 in 2013.

➢ A workflow-based notation created in 2004 by the Business Process

Management Initiative (BPMI) and the Object Management Group

(OMG).

7

Excerpt of the BPMN Syntax

8

Excerpt of the BPMN Syntax

8

Example of BPMN Process

Given the BPMN syntax, one can, for instance, write a business trip
organization process as follows:

9

Example of BPMN Process

Given the BPMN syntax, one can, for instance, write a business trip
organization process as follows:

9

Example of BPMN Process

Given the BPMN syntax, one can, for instance, write a business trip
organization process as follows:

9

Example of BPMN Process

Given the BPMN syntax, one can, for instance, write a business trip
organization process as follows:

9

Unbalanced
structure

How to write a BPMN process?

10

How to avoid wasting time designing?

11

~30m!

The mission
paperwork should
be done before the
hotel reservation!!!

How to match the expected behaviour?

12

How to ensure syntactic/semantic correctness?

X

Syntactic
error!

Semantic
error!

13

PhD Research Axes

14

➢ How to write a BPMN process?

➢ How to avoid wasting time designing?

➢ How to match the expected behaviour?

➢ How to ensure syntactic/semantic correctness?

Modelling BPMN processes

How to optimise a BPMN process?

15

How to optimise a BPMN process?

15

Is this process
optimal?!

How to optimise a BPMN process?

15

Is this process
optimal?!

➢ In the resource-free, durations-free, single instance context, yes!

How to optimise a BPMN process?

15

But what if we enrich the process with:

How to optimise a BPMN process?

16

But what if we enrich the process with:

(norm, 7, 0.75)

(unif, 2, 3)

(norm, 3, 0.5)

(norm, 1, 0.1)

(norm, 1, 0.2)

(norm, 10, 1)

(norm, 14, 2)

(norm, 1, 0.1)

(norm, 7, 1)

(norm, 1, 0.2)

➢ Durations (following probabilistic distributions)

How to optimise a BPMN process?

16

But what if we enrich the process with:

(norm, 7, 0.75)

(unif, 2, 3)

(norm, 3, 0.5)

(norm, 1, 0.1)

(norm, 1, 0.2)

(norm, 10, 1)

(norm, 14, 2)

(norm, 1, 0.1)

(norm, 7, 1)

(norm, 1, 0.2)

1 assistant

1 travel agency

1 assistant

1 visa office

1 doctor,
1 employee

1 driver

1 assistant

1 insurer

1 employee

➢ Durations (following probabilistic distributions)

➢ Resources

How to optimise a BPMN process?

16

But what if we enrich the process with:
➢ Durations (following probabilistic distributions)

➢ Resources

➢ Multiple Simultaneous Executions

(norm, 7, 0.75)

(unif, 2, 3)

(norm, 3, 0.5)

(norm, 1, 0.1)

(norm, 1, 0.2)

(norm, 10, 1)

(norm, 14, 2)

(norm, 1, 0.1)

(norm, 7, 1)

(norm, 1, 0.2)

1 assistant

1 travel agency

1 assistant

1 visa office

1 doctor,
1 employee

1 driver

1 assistant

1 insurer

1 employee

(norm, 7, 0.75)

(unif, 2, 3)

(norm, 3, 0.5)

(norm, 1, 0.1)

(norm, 1, 0.2)

(norm, 10, 1)

(norm, 14, 2)

(norm, 1, 0.1)

(norm, 7, 1)

(norm, 1, 0.2)

1 assistant

1 travel agency

1 assistant

1 visa office

1 doctor,
1 employee

1 driver

1 assistant

1 insurer

1 employee

(norm, 7, 0.75)

(unif, 2, 3)

(norm, 3, 0.5)

(norm, 1, 0.1)

(norm, 1, 0.2)

(norm, 10, 1)

(norm, 14, 2)

(norm, 1, 0.1)

(norm, 7, 1)

(norm, 1, 0.2)

1 assistant

1 travel agency

1 assistant

1 visa office

1 doctor,
1 employee

1 driver

1 assistant

1 insurer

1 employee

In
st

an
ce

 1

In
st

an
ce

 2

In
st

an
ce

 3

How to optimise a BPMN process?

16

But what if we enrich the process with:
➢ Durations (following probabilistic distributions)

➢ Resources

➢ Multiple Simultaneous Executions

(norm, 7, 0.75)

(unif, 2, 3)

(norm, 3, 0.5)

(norm, 1, 0.1)

(norm, 1, 0.2)

(norm, 10, 1)

(norm, 14, 2)

(norm, 1, 0.1)

(norm, 7, 1)

(norm, 1, 0.2)

1 assistant

1 travel agency

1 assistant

1 visa office

1 doctor,
1 employee

1 driver

1 assistant

1 insurer

1 employee

(norm, 7, 0.75)

(unif, 2, 3)

(norm, 3, 0.5)

(norm, 1, 0.1)

(norm, 1, 0.2)

(norm, 10, 1)

(norm, 14, 2)

(norm, 1, 0.1)

(norm, 7, 1)

(norm, 1, 0.2)

1 assistant

1 travel agency

1 assistant

1 visa office

1 doctor,
1 employee

1 driver

1 assistant

1 insurer

1 employee

(norm, 7, 0.75)

(unif, 2, 3)

(norm, 3, 0.5)

(norm, 1, 0.1)

(norm, 1, 0.2)

(norm, 10, 1)

(norm, 14, 2)

(norm, 1, 0.1)

(norm, 7, 1)

(norm, 1, 0.2)

1 assistant

1 travel agency

1 assistant

1 visa office

1 doctor,
1 employee

1 driver

1 assistant

1 insurer

1 employee

In
st

an
ce

 1

In
st

an
ce

 2

In
st

an
ce

 3

How to optimise a BPMN process?

16

⇒ The problem becomes much more complex!

PhD Research Axes

➢ How can you optimise a BPMN process in real-world conditions?

17

➢ How to write a BPMN process?

➢ How to avoid wasting time designing?

➢ How to match the expected behaviour?

➢ How to ensure syntactic/semantic correctness?

Modelling BPMN processes

Optimising BPMN processes

Contributions of the Thesis – Modelling of Processes

18

Contributions of the Thesis – Modelling of Processes

18

➢ An approach generating a BPMN process from a textual
description of its requirements which:
■ Manipulates abstract syntax trees
■ Handles balanced BPMN processes

ICSOC’24

Contributions of the Thesis – Modelling of Processes

18

➢ An approach generating a BPMN process from a textual
description of its requirements which:
■ Manipulates abstract syntax trees
■ Handles balanced BPMN processes

➢ A tool approach coupling:
■ Generation of the BPMN process
■ Verification based on textual descriptions of

temporal logic properties

ICSOC’24

FSE’25

Contributions of the Thesis – Modelling of Processes

18

➢ An approach generating a BPMN process from a textual
description of its requirements which:
■ Manipulates abstract syntax trees
■ Handles balanced BPMN processes

➢ A tool approach coupling:
■ Generation of the BPMN process
■ Verification based on textual descriptions of

temporal logic properties

➢ An extension of the BPMN generation approach to:
■ Handle unbalanced processes
■ Provide strong semantical guarantees

ICSOC’24

FSE’25

TSE’25

(submitted)

Contributions of the Thesis – Modelling of Processes

18

➢ An approach generating a BPMN process from a textual
description of its requirements which:
■ Manipulates abstract syntax trees
■ Handles balanced BPMN processes

➢ A tool approach coupling:
■ Generation of the BPMN process
■ Verification based on textual descriptions of

temporal logic properties

➢ An extension of the BPMN generation approach to:
■ Handle unbalanced processes
■ Provide strong semantical guarantees

ICSOC’24

FSE’25

TSE’25

(submitted)

Focus

Contributions of the Thesis – Optimisation of Processes

19

Contributions of the Thesis – Optimisation of Processes

19

➢ An approach refactoring a BPMN process with:
■ Static analysis of the process
■ Computation of (theoretical) optimal pool of resources
■ Support for constant durations

SEFM’23

Contributions of the Thesis – Optimisation of Processes

19

➢ An approach refactoring a BPMN process with:
■ Static analysis of the process
■ Computation of (theoretical) optimal pool of resources
■ Support for constant durations

➢ An approach refactoring a BPMN process with:
■ Simulation-based analysis of the process
■ Involvement of the user in the decisions
■ Support for non-constant durations

SEFM’23

QRS’24

Contributions of the Thesis – Optimisation of Processes

19

➢ An approach refactoring a BPMN process with:
■ Static analysis of the process
■ Computation of (theoretical) optimal pool of resources
■ Support for constant durations

➢ An approach refactoring a BPMN process with:
■ Simulation-based analysis of the process
■ Involvement of the user in the decisions
■ Support for non-constant durations

➢ An extension of the second approach to:
■ Handle multiple optimisation criteria

SEFM’23

QRS’24

JSS’25

(submitted)

Contributions of the Thesis – Optimisation of Processes

19

➢ An approach refactoring a BPMN process with:
■ Static analysis of the process
■ Computation of (theoretical) optimal pool of resources
■ Support for constant durations

➢ An approach refactoring a BPMN process with:
■ Simulation-based analysis of the process
■ Involvement of the user in the decisions
■ Support for non-constant durations

➢ An extension of the second approach to:
■ Handle multiple optimisation criteria

SEFM’23

QRS’24

JSS’25

(submitted)

Focus

Plan

I/ Introduction

II/ Automated Generation of BPMN
Processes from Textual Requirements

III/ Human-Centered Refactoring-Based
Optimisation of BPMN Processes

IV/ Related Work

V/ Takeaways

VI/ References

20

Automated Generation of BPMN – Big Picture

21

Automated Generation of BPMN – Big Picture

21

Automated Generation of BPMN – Big Picture

21

First of all, an employee
CollectGoods. Then, the client

PayForDelivery while the
employee PrepareParcel.
Finally, the company can
either DeliverByCar or

DeliverByDrone (depending
on the distance for example)

Textual Representation
of the Process

Global Picture of the Approach

22

First of all, an employee
CollectGoods. Then, the client

PayForDelivery while the
employee PrepareParcel.
Finally, the company can
either DeliverByCar or

DeliverByDrone (depending
on the distance for example)

Textual Representation
of the Process

Large Language
Model (LLM)

Fine-

tuned!

Global Picture of the Approach

22

First of all, an employee
CollectGoods. Then, the client

PayForDelivery while the
employee PrepareParcel.
Finally, the company can
either DeliverByCar or

DeliverByDrone (depending
on the distance for example)

Textual Representation
of the Process

- CollectGoods < (PayForDelivery, PrepareParcel)
- (PayForDelivery, PrepareParcel) < (DeliverByCar,
DeliverByDrone)

Expressions Following
an Internal Grammar

Large Language
Model (LLM)

Fine-

tuned!

Global Picture of the Approach

22

First of all, an employee
CollectGoods. Then, the client

PayForDelivery while the
employee PrepareParcel.
Finally, the company can
either DeliverByCar or

DeliverByDrone (depending
on the distance for example)

Textual Representation
of the Process

- CollectGoods < (PayForDelivery, PrepareParcel)
- (PayForDelivery, PrepareParcel) < (DeliverByCar,
DeliverByDrone)

Expressions Following
an Internal Grammar

Abstract Syntax Trees

Large Language
Model (LLM)

Fine-

tuned!

Global Picture of the Approach

22

First of all, an employee
CollectGoods. Then, the client

PayForDelivery while the
employee PrepareParcel.
Finally, the company can
either DeliverByCar or

DeliverByDrone (depending
on the distance for example)

Textual Representation
of the Process

- CollectGoods < (PayForDelivery, PrepareParcel)
- (PayForDelivery, PrepareParcel) < (DeliverByCar,
DeliverByDrone)

Expressions Following
an Internal Grammar

Abstract Syntax Trees

Large Language
Model (LLM)

Fine-

tuned!

Dependency Graph
(Skeleton of the Process)

Global Picture of the Approach

22

First of all, an employee
CollectGoods. Then, the client

PayForDelivery while the
employee PrepareParcel.
Finally, the company can
either DeliverByCar or

DeliverByDrone (depending
on the distance for example)

Textual Representation
of the Process

- CollectGoods < (PayForDelivery, PrepareParcel)
- (PayForDelivery, PrepareParcel) < (DeliverByCar,
DeliverByDrone)

Expressions Following
an Internal Grammar

Abstract Syntax TreesBPMN Process

Large Language
Model (LLM)

Fine-

tuned!

Dependency Graph
(Skeleton of the Process)

Global Picture of the Approach

22

First of all, an employee
CollectGoods. Then, the client

PayForDelivery while the
employee PrepareParcel.
Finally, the company can
either DeliverByCar or

DeliverByDrone (depending
on the distance for example)

Textual Representation
of the Process

Large Language
Model (LLM)

- CollectGoods < (PayForDelivery, PrepareParcel)
- (PayForDelivery, PrepareParcel) < (DeliverByCar,
DeliverByDrone)

Expressions Following
an Internal Grammar

Abstract Syntax Trees
Dependency Graph

(Skeleton of the Process)BPMN Process

Refinement

Fine-

tuned!

Global Picture of the Approach

22

Detailed Approach – Step 1 – Description

First, the developer StartFeatureManagementSoftware (StFMS).
Then, he DescribeNewFeatureRequirements (DNFR). After that, the staff ValidateInternally (VI), and the
client ValidateExternally (VE). Once the feature has been validated internally, the developer can
CreateNewFeatureBranch (CNFB). Once the feature is completely validated (internally and externally),
the staff can StartTechnicalDesign (STD). Instead of describing a new feature, validate it, create a new
branch and start technical design, the developer can also LoadCurrentlyDevelopedFeature (LCDF). The
FeatureDevelopment (FD) then eventually starts, followed by a DebuggingPhase (DP) useful to chase
possible bugs before releasing the feature. This phase leads either to a BugCaseOpening (BCO), or to
ReleaseFeature (RF) if no bug was found. If a bug case is opened, three different operations may start:
either the first support level initiates a FirstStageDebugPhase (FSDP), which eventually leads to
ClosingFirstLevelRequest (CFLR), or the second support level initiates a SecondStageDebugPhase
(SSDP), which eventually leads to ClosingSecondLevelRequest (CSLR), or the third support level initiates
a ThirdStageDebugPhase (TSDP), which eventually leads to ClosingThirdLevelRequest (CTLR). Once
these phases are closed, either there is no bug anymore to correct, and the ReleaseFeature task (RF)
occurs, or a new bug is found, leading to DebuggingPhase (DP) again. Also, the FirstStageDebugPhase
(FSDP), SecondStageDebugPhase (SSDP) and ThirdStageDebugPhase (TSDP) and their closing can be
repeated until a bug is properly corrected. Once ReleaseFeature (RF) occurred, the developer can either
ShutdownFeatureManagementSoftware (ShFMS), or start again with the task
DescribeNewFeatureRequirements (DNFR).

The user first has to write a textual description of the process-to-be.

23

First, the developer StartFeatureManagementSoftware (StFMS).
Then, he DescribeNewFeatureRequirements (DNFR). After that, the staff ValidateInternally
(VI), and the client ValidateExternally (VE). Once the feature has been validated internally, the
developer can CreateNewFeatureBranch (CNFB). Once the feature is completely validated
(internally and externally), the staff can StartTechnicalDesign (STD). Instead of describing a
new feature, validate it, create a new branch and start technical design, the developer can also
LoadCurrentlyDevelopedFeature (LCDF). The FeatureDevelopment (FD) then eventually starts,
followed by a DebuggingPhase (DP) useful to chase possible bugs before releasing the feature.
This phase leads either to a BugCaseOpening (BCO), or to ReleaseFeature (RF) if no bug was
found. If a bug case is opened, three different operations may start: either the first support
level initiates a FirstStageDebugPhase (FSDP), which eventually leads to
ClosingFirstLevelRequest (CFLR), or the second support level initiates a
SecondStageDebugPhase (SSDP), which eventually leads to ClosingSecondLevelRequest
(CSLR), or the third support level initiates a ThirdStageDebugPhase (TSDP), which eventually
leads to ClosingThirdLevelRequest (CTLR). Once these phases are closed, either there is no bug
anymore to correct, and the ReleaseFeature task (RF) occurs, or a new bug is found, leading to
DebuggingPhase (DP) again. Also, the FirstStageDebugPhase (FSDP),
SecondStageDebugPhase (SSDP) and ThirdStageDebugPhase (TSDP) and their closing can be
repeated until a bug is properly corrected. Once ReleaseFeature (RF) occurred, the developer
can either ShutdownFeatureManagementSoftware (ShFMS), or start again with the task
DescribeNewFeatureRequirements (DNFR).

The textual description is then given to a (fine-tuned) LLM (GPT-4o atm).

Fine-

tuned!

Detailed Approach – Step 2 – LLM Prompting

24

Detailed Approach – Step 2 – LLM Prompting

First, the developer StartFeatureManagementSoftware (StFMS).
Then, he DescribeNewFeatureRequirements (DNFR). After that, the staff ValidateInternally
(VI), and the client ValidateExternally (VE). Once the feature has been validated internally, the
developer can CreateNewFeatureBranch (CNFB). Once the feature is completely validated
(internally and externally), the staff can StartTechnicalDesign (STD). Instead of describing a
new feature, validate it, create a new branch and start technical design, the developer can also
LoadCurrentlyDevelopedFeature (LCDF). The FeatureDevelopment (FD) then eventually starts,
followed by a DebuggingPhase (DP) useful to chase possible bugs before releasing the feature.
This phase leads either to a BugCaseOpening (BCO), or to ReleaseFeature (RF) if no bug was
found. If a bug case is opened, three different operations may start: either the first support
level initiates a FirstStageDebugPhase (FSDP), which eventually leads to
ClosingFirstLevelRequest (CFLR), or the second support level initiates a
SecondStageDebugPhase (SSDP), which eventually leads to ClosingSecondLevelRequest
(CSLR), or the third support level initiates a ThirdStageDebugPhase (TSDP), which eventually
leads to ClosingThirdLevelRequest (CTLR). Once these phases are closed, either there is no bug
anymore to correct, and the ReleaseFeature task (RF) occurs, or a new bug is found, leading to
DebuggingPhase (DP) again. Also, the FirstStageDebugPhase (FSDP),
SecondStageDebugPhase (SSDP) and ThirdStageDebugPhase (TSDP) and their closing can be
repeated until a bug is properly corrected. Once ReleaseFeature (RF) occurred, the developer
can either ShutdownFeatureManagementSoftware (ShFMS), or start again with the task
DescribeNewFeatureRequirements (DNFR).

The textual description is then given to a (fine-tuned) LLM (GPT-4o atm).

Fine-

tuned!

The LLM processes the description and returns a set of expressions
following an internal grammar.

24

Given our description, the LLM returns ten expressions:

Detailed Approach – Step 3 – Expressions

25

Given our description, the LLM returns ten expressions:

StFMS < DNFR < (VI, VE)
VI < CNFB

(VI, VE) < STD

(DNFR, VI, VE, CNFB, STD) | LCDF
(STD, CNFB) < (FD < DP)

DP < (BCO | RF)
BCO < ((FSDP < CFLR) | (SSDP < CSLR) | (TSDP < CTLR))

(CFLR, CSLR, CTLR) < (RF | DP)

(FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

RF < (ShFMS | DNFR)

Detailed Approach – Step 3 – Expressions

25

Detailed Approach – Step 3 – Expressions

Given our description, the LLM returns ten expressions:

StFMS < DNFR < (VI, VE)
VI < CNFB

(VI, VE) < STD

(DNFR, VI, VE, CNFB, STD) | LCDF
(STD, CNFB) < (FD < DP)

DP < (BCO | RF)
BCO < ((FSDP < CFLR) | (SSDP < CSLR) | (TSDP < CTLR))

(CFLR, CSLR, CTLR) < (RF | DP)

(FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

RF < (ShFMS | DNFR)

25

These expressions are then mapped to their corresponding (reduced)
abstract syntax trees (ASTs).

Detailed Approach – Step 4 – ASTs Mapping

26

These expressions are then mapped to their corresponding (reduced)
abstract syntax trees (ASTs).

Detailed Approach – Step 4 – ASTs Mapping

26

Detailed Approach – Step 4 – ASTs Mapping

These expressions are then mapped to their corresponding (reduced)
abstract syntax trees (ASTs).

26

The sequential information contained in the multiple ASTs is then gathered
to obtain a cleaner and more compact representation of it, called
dependency graph.

Detailed Approach – Step 5 – Dependency Graph

27

The sequential information contained in the multiple ASTs is then gathered
to obtain a cleaner and more compact representation of it, called
dependency graph.

Detailed Approach – Step 5 – Dependency Graph

27

This graph is then transformed into the corresponding BPMN process by
adding a start event, one or several end events, and exclusive gateways.

Detailed Approach – Step 6 – BPMN Generation

28

Detailed Approach – Step 6 – BPMN Generation

This graph is then transformed into the corresponding BPMN process by
adding a start event, one or several end events, and exclusive gateways.

28

Detailed Approach – Step 7 – Refinement

However, this process is incomplete with regards to the expressions!

29

Detailed Approach – Step 7 – Refinement

However, this process is incomplete with regards to the expressions!

29

Detailed Approach – Step 7 – Refinement

However, this process is incomplete with regards to the expressions!

(DNFR, VI, VE, CNFB, STD) | LCDF

29

Detailed Approach – Step 7 – Refinement

However, this process is incomplete with regards to the expressions!

(DNFR, VI, VE, CNFB, STD) | LCDF
Task LCDF is
not in the process!

29

Detailed Approach – Step 7 – Refinement

However, this process is incomplete with regards to the expressions!

(DNFR, VI, VE, CNFB, STD) | LCDF (FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

29

Detailed Approach – Step 7 – Refinement

However, this process is incomplete with regards to the expressions!

(DNFR, VI, VE, CNFB, STD) | LCDF (FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

The six tasks
are not in a loop!

29

Detailed Approach – Step 7 – Refinement

However, this process is incomplete with regards to the expressions!

(DNFR, VI, VE, CNFB, STD) | LCDF (FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

The process
does not contain
parallelism!

29

The next step thus consists in refining the generated process by adding to
it all the missing information stated in the expressions, and parallelism.

30

Detailed Approach – Step 7 – Refinement

The next step thus consists in refining the generated process by adding to
it all the missing information stated in the expressions, and parallelism.

Detailed Approach – Step 7 – Refinement

30

(DNFR, VI, VE, CNFB, STD) | LCDF

Mutual exclusions handling

The next step thus consists in refining the generated process by adding to
it all the missing information stated in the expressions, and parallelism.

Detailed Approach – Step 7 – Refinement

30

(DNFR, VI, VE, CNFB, STD) | LCDF

Mutual exclusions handling Explicit loops handling

(FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

The next step thus consists in refining the generated process by adding to
it all the missing information stated in the expressions, and parallelism.

Detailed Approach – Step 7 – Refinement

(DNFR, VI, VE, CNFB, STD) | LCDF

Mutual exclusions handling Explicit loops handling

(FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

Parallelism insertion

30

The next step thus consists in refining the generated process by adding to
it all the missing information stated in the expressions, and parallelism.

Detailed Approach – Step 7 – Refinement

(DNFR, VI, VE, CNFB, STD) | LCDF

Mutual exclusions handling Explicit loops handling

(FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

Parallelism insertion

Focus

30

In a graph, a loop can be seen as a strongly connected component.
Detailed Approach – Step 7.2 – Explicit Loops

31

In a graph, a loop can be seen as a strongly connected component.
Detailed Approach – Step 7.2 – Explicit Loops

31

In a graph, a loop can be seen as a strongly connected component.
Detailed Approach – Step 7.2 – Explicit Loops

31

In a graph, a loop can be seen as a strongly connected component.
Detailed Approach – Step 7.2 – Explicit Loops

31

Detailed Approach – Step 7.2 – Explicit Loops

32

Our proposal thus consists in modifying the graph restricted to the tasks of
the loop to make it become a strongly connected component.

Detailed Approach – Step 7.2 – Explicit Loops

32

Our proposal thus consists in modifying the graph restricted to the tasks of
the loop to make it become a strongly connected component.

We define the restriction of a graph to a subset of its vertices as follows.

Given our BPMN process, its restriction to the tasks belonging to expression

(FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

is:

Detailed Approach – Step 7.2 – Explicit Loops

33

Given our BPMN process, its restriction to the tasks belonging to expression

(FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

is:

Detailed Approach – Step 7.2 – Explicit Loops

33

Given our BPMN process, its restriction to the tasks belonging to expression

(FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

is:

Detailed Approach – Step 7.2 – Explicit Loops

33

Component 1

Given our BPMN process, its restriction to the tasks belonging to expression

(FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

is:

Detailed Approach – Step 7.2 – Explicit Loops

33

Component 1

Component 2

Given our BPMN process, its restriction to the tasks belonging to expression

(FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

is:

Detailed Approach – Step 7.2 – Explicit Loops

33

Component 1

Component 2

Component 3

Detailed Approach – Step 7.2 – Explicit Loops

These components are then connected to create a single component.

34

Detailed Approach – Step 7.2 – Explicit Loops

These components are then connected to create a single component.

34

This connection is based on the n-reachability of each node, i.e., the
number of nodes that they can reach.

Detailed Approach – Step 7.2 – Explicit Loops

These components are then connected to create a single component.

34

This connection is based on the n-reachability of each node, i.e., the
number of nodes that they can reach.

0-reachability

0-reachability

0-reachability

1-reachability

1-reachability

1-reachability

Each node of a component having a 0-reachability must be connected to
the node of another component having the maximum reachability, but this
can be done in any order.

0-reachability

0-reachability

0-reachability

1-reachability

1-reachability

1-reachability

Detailed Approach – Step 7.2 – Explicit Loops

34

Detailed Approach – Step 7.2 – Explicit Loops

34

2-reachability

0-reachability

0-reachability

3-reachability

1-reachability

1-reachability

Each node of a component having a 0-reachability must be connected to
the node of another component having the maximum reachability, but this
can be done in any order.

Detailed Approach – Step 7.2 – Explicit Loops

34

4-reachability

2-reachability

0-reachability

5-reachability

3-reachability

1-reachability

Each node of a component having a 0-reachability must be connected to
the node of another component having the maximum reachability, but this
can be done in any order.

Detailed Approach – Step 7.2 – Explicit Loops

34

6-reachability

6-reachability

6-reachability

6-reachability

6-reachability

6-reachability

Each node of a component having a 0-reachability must be connected to
the node of another component having the maximum reachability, but this
can be done in any order.

Detailed Approach – Step 7.2 – Explicit Loops

34

6-reachability

6-reachability

6-reachability

6-reachability

6-reachability

6-reachability

Each node of a component having a 0-reachability must be connected to
the node of another component having the maximum reachability, but this
can be done in any order.

Detailed Approach – Step 7.2 – Explicit Loops
These new edges are then eventually added to the BPMN process to make
the loop appear in it:

35

Detailed Approach – Final Process

After applying these successive refinement steps, the process is complete.

36

Detailed Approach – Final Process

After applying these successive refinement steps, the process is complete.

36

(DNFR, VI, VE, CNFB, STD) | LCDF

Detailed Approach – Final Process

After applying these successive refinement steps, the process is complete.

36

(FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

(DNFR, VI, VE, CNFB, STD) | LCDF

Detailed Approach – Final Process

After applying these successive refinement steps, the process is complete.

36

(FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

(DNFR, VI, VE, CNFB, STD) | LCDF

Detailed Approach – Constraints Preservation

37

Detailed Approach – Constraints Preservation

37

Sequence

Detailed Approach – Constraints Preservation

37

Mutual
Exclusions

Sequence

Detailed Approach – Constraints Preservation

37

Mutual
Exclusions

Explicit
Loops

Sequence

Detailed Approach – Constraints Preservation

37

Mutual
Exclusions

Parallelism
Explicit
Loops

Sequence

➢ 12k lines of Java code

Tool Support

38

➢ Tool available online
(https://lig-givup.imag.fr/)

Experiments were conducted on 200 examples, 25% coming from the PET
dataset and the literature, and 75% handcrafted.

Experiments – Quality of the Generated Process

39

Correct
processes

Experiments – Quality of the Generated Process

39

Correct
processes

Ambiguous
processes

Experiments – Quality of the Generated Process

39

Correct
processes

Ambiguous
processes

Incorrect
processes

Experiments – Quality of the Generated Process

39

Experiments – Quality of the Generated Process

Correct
processes

Ambiguous
processes

Incorrect
processes

An ambiguous process is a process that is not incorrect with regards
to the description, but which does not correspond to the expectations
of the experts.

39

Plan

I/ Introduction

II/ Automated Generation of BPMN
Processes from Textual Requirements

III/ Human-Centered Refactoring-Based
Optimisation of BPMN Processes

IV/ Related Work

V/ Takeaways

VI/ References

40

Optimisation of BPMN Processes – Existing Solutions

41

➢ Operational research deals with analytical problem solving

41

Optimisation of BPMN Processes – Existing Solutions

➢ Operational research deals with analytical problem solving

⇒ no analytical representation of our problem

41

Optimisation of BPMN Processes – Existing Solutions

➢ Operational research deals with analytical problem solving

⇒ no analytical representation of our problem

➢ Resource balancing allows to adapt the pool of resources

41

Optimisation of BPMN Processes – Existing Solutions

➢ Operational research deals with analytical problem solving

⇒ no analytical representation of our problem

➢ Resource balancing allows to adapt the pool of resources

⇒ requires flexibility in the available resources

41

Optimisation of BPMN Processes – Existing Solutions

➢ Operational research deals with analytical problem solving

⇒ no analytical representation of our problem

➢ Resource balancing allows to adapt the pool of resources

⇒ requires flexibility in the available resources

➢ Scheduling permits to modify order of execution of the tasks

➢ Operational research deals with analytical problem solving

⇒ no analytical representation of our problem

➢ Resource balancing allows to adapt the pool of resources

⇒ requires flexibility in the available resources

➢ Scheduling permits to modify order of execution of the tasks

⇒ does not solve inherent structural issues

41

Optimisation of BPMN Processes – Existing Solutions

➢ Operational research deals with analytical problem solving

⇒ no analytical representation of our problem

➢ Resource balancing allows to adapt the pool of resources

⇒ requires flexibility in the available resources

➢ Process refactoring modifies the structure of the process with the

goal of optimising it

➢ Scheduling permits to modify order of execution of the tasks

⇒ does not solve inherent structural issues

41

Optimisation of BPMN Processes – Existing Solutions

41

Optimisation of BPMN Processes – Existing Solutions

➢ Operational research deals with analytical problem solving

⇒ no analytical representation of our problem

➢ Resource balancing allows to adapt the pool of resources

⇒ requires flexibility in the available resources

➢ Process refactoring modifies the structure of the process with the

goal of optimising it

➢ Scheduling permits to modify order of execution of the tasks

⇒ does not solve inherent structural issues

Refactoring a process consists in modifying the order in which the tasks are

organised, in order to optimise the process with regards to some quantitative

criteria (execution time, resources usage, costs, etc.).

Process Refactoring

42

Refactoring a process consists in modifying the order in which the tasks are

organised, in order to optimise the process with regards to some quantitative

criteria (execution time, resources usage, costs, etc.).

20 UT10 UT

Process Refactoring

42

Refactoring a process consists in modifying the order in which the tasks are

organised, in order to optimise the process with regards to some quantitative

criteria (execution time, resources usage, costs, etc.).

20 UT10 UT

30 UT to complete

Process Refactoring

42

Refactoring a process consists in modifying the order in which the tasks are

organised, in order to optimise the process with regards to some quantitative

criteria (execution time, resources usage, costs, etc.).

20 UT10 UT

10 UT

20 UT

30 UT to complete

Process Refactoring

42

Process Refactoring

Refactoring a process consists in modifying the order in which the tasks are

organised, in order to optimise the process with regards to some quantitative

criteria (execution time, resources usage, costs, etc.).

20 UT10 UT

10 UT

20 UT

30 UT to complete 20 UT to complete

42

Parallelising: an obvious solution?

However, parallelising a process does not necessarily optimise it!

43

Parallelising: an obvious solution?

A B C

However, parallelising a process does not necessarily optimise it!

43

Parallelising: an obvious solution?

A B C

1 R1 1 R2 1 R3

However, parallelising a process does not necessarily optimise it!

43

Parallelising: an obvious solution?

A B C

10 UT

1 R1

20 UT

1 R2

15 UT

1 R3

However, parallelising a process does not necessarily optimise it!

43

Parallelising: an obvious solution?

A B C

10 UT

1 R1

20 UT

1 R2

15 UT

1 R3

However, parallelising a process does not necessarily optimise it!

43

Parallelising: an obvious solution?

A

Res.

1 R2
1 R1

1 R3
B C

10 UT

1 R1

20 UT

1 R2

15 UT

1 R3

However, parallelising a process does not necessarily optimise it!

43

Parallelising: an obvious solution?

A

Res.

1 R2
1 R1

1 R3
B C

10 UT

1 R1

20 UT

1 R2

15 UT

1 R3

However, parallelising a process does not necessarily optimise it!

43

100 instances

Parallelising: an obvious solution?

A

Res.

1 R2
1 R1

1 R3

100 instances

B C

AET = 838 UT

AET = 787 UT

10 UT

1 R1

20 UT

1 R2

15 UT

1 R3

However, parallelising a process does not necessarily optimise it!

43

➢ How can you guide the refactoring to optimise the process?

Refactoring-related problematics

44

➢ How can you guide the refactoring to optimise the process?

Refactoring-related problematics

44

➢ How can you preserve the logic/meaning of the original process?

➢ How can you guide the refactoring to optimise the process?

Refactoring-related problematics

44

➢ How can you preserve the logic/meaning of the original process?

➢ How can you preserve the structural semantics of the original
process?

➢ How can you guide the refactoring to optimise the process?

Refactoring-related problematics

44

➢ How can you preserve the logic/meaning of the original process?

➢ How can you preserve the structural semantics of the original
process?

➢ How can you maximise the chances of the user to understand the
refactored process?

Global Picture of the Approach

45

Global Picture of the Approach

45

1

Global Picture of the Approach

45

1 2

Global Picture of the Approach

45

1 2

3

Step 1 – Election of the Task to Move

46

The first step consists in proposing a task to move to the user.

Step 1 – Election of the Task to Move

46

The first step consists in proposing a task to move to the user.

The user validates
the task, so we can
move it.

Step 1 – Election of the Task to Move

46

The user validates
the task, so we can
move it.

The user declines the
task, so we propose a
new task to move.

The first step consists in proposing a task to move to the user.

The relocation of the task must preserve the structural semantics of the

process.

Step 2 – Relocation of the Task

47

The relocation of the task must preserve the structural semantics of the

process.

Step 2 – Relocation of the Task

47

The relocation of the task must preserve the structural semantics of the

process.

Step 2 – Relocation of the Task

47

Loop

The relocation of the task must preserve the structural semantics of the

process.

Step 2 – Relocation of the Task

47

Loop
Choice

The relocation of the task must preserve the structural semantics of the

process.

Step 2 – Relocation of the Task

47

To facilitate this preservation, the relocation of the task is not performed on

the BPMN process, but on another representation, called sequence graph.

Loop
Choice

Step 2 – BPMN to Sequence Graph

48

Step 2 – BPMN to Sequence Graph

48

Step 2 – BPMN to Sequence Graph

48

Step 2 – Refactoring Patterns

The selected task is moved thanks to 4 refactoring patterns.

49

Step 2 – Refactoring Patterns

The selected task is moved thanks to 4 refactoring patterns.

49

Task Between Nodes

Task Before/After Elements of a Node

Task in Parallel of Sub-Sequences

Task Inside Choices

Step 2 – Refactoring Patterns

The selected task is moved thanks to 4 refactoring patterns.

49

Task Between Nodes

Task Before/After Elements of a Node

Task in Parallel of Sub-Sequences

Task Inside Choices

Focus

The second pattern consists in inserting the task in parallel of any non-empty

subsequence of nodes of the graph.

Step 2 – Pattern 2

50

Validate
payment

The second pattern consists in inserting the task in parallel of any non-empty

subsequence of nodes of the graph.
New
node

Step 2 – Pattern 2

50

Validate
payment

The second pattern consists in inserting the task in parallel of any non-empty

subsequence of nodes of the graph.
New
node

Step 2 – Pattern 2

50

Validate
payment

The second pattern consists in inserting the task in parallel of any non-empty

subsequence of nodes of the graph.

Step 2 – Pattern 2

50

Validate
payment

New
node

Step 2 – Structural Semantics Preservation

We showed in the manuscript that the refactoring patterns preserve the
structural semantics of the process.

51

Step 2 – Structural Semantics Preservation

We showed in the manuscript that the refactoring patterns preserve the
structural semantics of the process.

51

Step 3 – Comparison of the generated processes

52

The generated processes are compared based on their average execution time

(AET), a metric obtained by simulating them in their real conditions.

52

The generated processes are compared based on their average execution time

(AET), a metric obtained by simulating them in their real conditions.

AET = 532 UT AET = 512 UT

AET = 589 UT AET = 685 UT

Step 3 – Comparison of the generated processes

52

The generated processes are compared based on their average execution time

(AET), a metric obtained by simulating them in their real conditions.

AET = 532 UT AET = 512 UT

AET = 589 UT AET = 685 UT

Step 3 – Comparison of the generated processes

53

However, the selected process is a local optimum!

Step 3 – Comparison bias: local optimum

Step 3 – Comparison bias: local optimum

53

However, the selected process is a local optimum!

PO
607 UT

Step 3 – Comparison bias: local optimum

53

However, the selected process is a local optimum!

PO

P1

607 UT

P2 P3

P4
532 UT 589 UT512 UT 685 UT

Iteration 1

Step 3 – Comparison bias: local optimum

53

However, the selected process is a local optimum!

PO

P1

607 UT

P2 P3

P4
532 UT 589 UT512 UT 685 UT

Iteration 1

Step 3 – Comparison bias: local optimum

53

However, the selected process is a local optimum!

PO

P1

607 UT

P2 P3

P4
532 UT 589 UT512 UT 685 UT

Iteration 1

Iteration 2

P2,1

497 UT
P2,2

509 UT

Step 3 – Comparison bias: local optimum

53

However, the selected process is a local optimum!

PO

P1

607 UT

P2 P3

P4
532 UT 589 UT512 UT 685 UT

Iteration 1

Iteration 2

P2,1

497 UT
P2,2

509 UT

Step 3 – Comparison bias: local optimum

53

However, the selected process is a local optimum!

PO

P1

607 UT

P2 P3

P4
532 UT 589 UT512 UT 685 UT

Iteration 1

Iteration 2

P2,1

497 UT
P2,2

509 UT
P4,1

527 UT
P4,2

607 UT
P4,3

436 UT

Step 3 – Comparison bias: local optimum

53

However, the selected process is a local optimum!

PO

P1

607 UT

P2 P3

P4
532 UT 589 UT512 UT 685 UT

Iteration 1

Iteration 2

P2,1

497 UT
P2,2

509 UT
P4,1

527 UT
P4,2

607 UT
P4,3

436 UT

Step 3 – Comparison bias: local optimum

53

However, the selected process is a local optimum!

PO

P1

607 UT

P2 P3

P4
532 UT 589 UT512 UT 685 UT

Iteration 1

Iteration 2

P2,1

497 UT
P2,2

509 UT
P4,1

527 UT
P4,2

607 UT
P4,3

436 UT

⇒ There is no guarantee that this local optimum will lead to a global one!

Step 3 – Comparison bias solution: full exploration

54

A solution is thus to compute the whole tree of solutions and pick the best leaf.

54

A solution is thus to compute the whole tree of solutions and pick the best leaf.

PO
607 UT

Step 3 – Comparison bias solution: full exploration

54

A solution is thus to compute the whole tree of solutions and pick the best leaf.

PO

P1

607 UT

P2 P3

P4
589 UT512 UT 685 UT

Iteration 1

532 UT

Step 3 – Comparison bias solution: full exploration

54

A solution is thus to compute the whole tree of solutions and pick the best leaf.

PO

P1

607 UT

P2 P3

P4
589 UT512 UT 685 UT

Iteration 1

Iteration 2

P2,1

497 UT
P2,2

509 UT
P4,1

527 UT
P4,2

607 UT
P4,3

436 UT
P3,1

569 UT

P1,1

446 UT
P1,2

484 UT

532 UT

Step 3 – Comparison bias solution: full exploration

54

A solution is thus to compute the whole tree of solutions and pick the best leaf.

PO

P1

607 UT

P2 P3

P4
589 UT512 UT 685 UT

Iteration 1

Iteration 2

P2,1

497 UT
P2,2

509 UT
P4,1

527 UT
P4,2

607 UT
P4,3

436 UT
P3,1

569 UT

P1,1

446 UT
P1,2

484 UT

532 UT

Step 3 – Comparison bias solution: full exploration

54

A solution is thus to compute the whole tree of solutions and pick the best leaf.

PO

P1

607 UT

P2 P3

P4
589 UT512 UT 685 UT

Iteration 1

Iteration 2

P2,1

497 UT
P2,2

509 UT
P4,1

527 UT
P4,2

607 UT
P4,3

436 UT
P3,1

569 UT

P1,1

446 UT
P1,2

484 UT

532 UT

However, this is not feasible in practice, due to the size of the generated tree.

Step 3 – Comparison bias solution: full exploration

54

A solution is thus to compute the whole tree of solutions and pick the best leaf.

For instance, a BPMN process with 15 tasks which can be moved to 20 different

places generates a tree of 1520 = 3 x 1023 nodes.

PO

P1

607 UT

P2 P3

P4
589 UT512 UT 685 UT

Iteration 1

Iteration 2

P2,1

497 UT
P2,2

509 UT
P4,1

527 UT
P4,2

607 UT
P4,3

436 UT
P3,1

569 UT

P1,1

446 UT
P1,2

484 UT

532 UT

However, this is not feasible in practice, due to the size of the generated tree.

Step 3 – Comparison bias solution: full exploration

55

Step 3 – Comparison bias solution: heuristics

Thus, there is a need for heuristics aiming at efficiently traversing the tree of

solutions.

55

Thus, there is a need for heuristics aiming at efficiently traversing the tree of

solutions.

Our proposal consists in attributing a (weighted) score to each generated

process, based on its AET and its resources usage.

Step 3 – Comparison bias solution: heuristics

56

Based on this score, one or several processes of the current layer are kept, and

used as basis for the computation of the next layer.

Step 3 – Comparison bias solution: heuristics

56

Based on this score, one or several processes of the current layer are kept, and

used as basis for the computation of the next layer.

PO
607 UT

Step 3 – Comparison bias solution: heuristics

56

Based on this score, one or several processes of the current layer are kept, and

used as basis for the computation of the next layer.

PO

P1

607 UT

P2 P3

P4
589 UT512 UT 685 UT

Iteration 1

532 UT

Step 3 – Comparison bias solution: heuristics

56

Based on this score, one or several processes of the current layer are kept, and

used as basis for the computation of the next layer.

PO

P1

607 UT

P2 P3

P4
589 UT512 UT 685 UT

Iteration 1

532 UT

Step 3 – Comparison bias solution: heuristics

56

Iteration 2

P4,3

436 UT
P3,1

569 UT

P1,1

446 UT
P1,2

484 UT

Based on this score, one or several processes of the current layer are kept, and

used as basis for the computation of the next layer.

PO

P1

607 UT

P2 P3

P4
589 UT512 UT 685 UT

Iteration 1

532 UT

Step 3 – Comparison bias solution: heuristics

56

Iteration 2

P4,3

436 UT
P3,1

569 UT

P1,1

446 UT
P1,2

484 UT

Based on this score, one or several processes of the current layer are kept, and

used as basis for the computation of the next layer.

PO

P1

607 UT

P2 P3

P4
589 UT512 UT 685 UT

Iteration 1

532 UT

Step 3 – Comparison bias solution: heuristics

56

Iteration 2

P4,3

436 UT
P3,1

569 UT

P1,1

446 UT
P1,2

484 UT

Based on this score, one or several processes of the current layer are kept, and

used as basis for the computation of the next layer.

PO

P1

607 UT

P2 P3

P4
589 UT512 UT 685 UT

Iteration 1

532 UT

We obtain a process that is close to the optimal (446 UT / 436 UT) while

fastening the computations.

Step 3 – Comparison bias solution: heuristics

Step 3 – Human Process Validation

57

The resulting process is then proposed to the user.

Step 3 – Human Process Validation

57

The resulting process is then proposed to the user.

The user validates
the process ⇒ we
propose a new task
to move on it.

Step 3 – Human Process Validation

57

The resulting process is then proposed to the user.

The user validates
the process ⇒ we
propose a new task
to move on it.

The user declines the
process ⇒ we propose a
new task to move on the
previous process.

Step 3 – End of Refactoring Loop

When all the tasks of the process have been moved, or when the user decides
to stop, the approach returns an optimised version of the original process.

58

Tool Support

➢ 15k lines of Java code

➢ Executes in the backend of a NodeJS server running locally

59

➢ Freely available online

Several experiments were conducted to validate the approach.

Experiments

60

Several experiments were conducted to validate the approach.

Experiments

60

Several experiments were conducted to validate the approach.

Experiments

60

Several experiments were conducted to validate the approach.

Experiments

60

Several experiments were conducted to validate the approach.

Experiments

60

Several experiments were conducted to validate the approach.

Experiments

60

Several experiments were conducted to validate the approach.

Experiments

60

Several experiments were conducted to validate the approach.

Experiments

60

Several experiments were conducted to validate the approach.

Experiments

60

Plan

I/ Introduction

II/ Automated Generation of BPMN
Processes from Textual Requirements

III/ Human-Centered Refactoring-Based
Optimisation of BPMN Processes

IV/ Related Work

V/ Takeaways

VI/ References

61

Related Work – Modelling

62

Related Work – Modelling

62

Related Work – Modelling

62

Related Work – Modelling

62

Related Work – Refactoring

63

Restructures a process

to solve structural
issues:

➢ soundness issues

➢ bad design

➢ duplicated parts

of the process

Qualitative refactoring

[SM2007, DGKV2011,

FRPCP2013]

Related Work – Refactoring

63

Restructures a process

to solve structural
issues:

➢ soundness issues

➢ bad design

➢ duplicated parts

of the process

Optimises a process by

changing its number of

available resources:

➢ statically

➢ runtime

➢ predictically

Qualitative refactoring

[SM2007, DGKV2011,

FRPCP2013]

Resource optimisation

[DRS2019, DRS2021,

FSZ2024]

Related Work – Refactoring

63

Qualitative refactoring

[SM2007, DGKV2011,

FRPCP2013]

Restructures a process

to solve structural
issues:

➢ soundness issues

➢ bad design

➢ duplicated parts

of the process

Resource optimisation

[DRS2019, DRS2021,

FSZ2024]

Optimises a process by

changing its number of

available resources:

➢ statically

➢ runtime

➢ predictically

Quantitative refactoring

[RM2005, KL2022,

DS2022]

Restructures a process

to optimise its

execution time:

➢ optional tasks

➢ duration reduction

➢ split/merge of

tasks

➢ local patterns

Plan

I/ Introduction

II/ Automated Generation of BPMN
Processes from Textual Requirements

III/ Human-Centered Refactoring-Based
Optimisation of BPMN Processes

IV/ Related Work

V/ Takeaways

VI/ References

64

Takeaways

65

We propose an approach to generate
BPMN processes:

Takeaways

65

We propose an approach to generate
BPMN processes:

➢ Fully automated, tested, and

available online

Takeaways

65

We propose an approach to generate
BPMN processes:

➢ Fully automated, tested, and

available online

➢ Correctly generating the process

in more than 80% of the cases

Takeaways

65

We propose an approach to generate
BPMN processes:

➢ Fully automated, tested, and

available online

➢ Correctly generating the process

in more than 80% of the cases

➢ Providing guarantees regarding

the semantics of the process

Takeaways

65

We propose an approach to generate
BPMN processes:

➢ Fully automated, tested, and

available online

➢ Correctly generating the process

in more than 80% of the cases

➢ Providing guarantees regarding

the semantics of the process

➢ Including behavioural verification
facilities

Takeaways

65

We propose an approach to generate
BPMN processes:

➢ Fully automated, tested, and

available online

➢ Correctly generating the process

in more than 80% of the cases

➢ Providing guarantees regarding

the semantics of the process

➢ Including behavioural verification
facilities

Refact.
Patterns

Static Analysis
Optimal Pool of

Resources

Non-Fixed
Durations

Multi-
Criteria

One-
Shot

Single
Crite-
rion

Multiple
Relocations

User-in-
the-loop

Heuristic-
based
Search

We propose 3 approaches to refactor
BPMN processes:

Perspectives

➢ Cross-check the generated expressions with other LLMs

➢ Add further information during generation (resources,

durations, …)

➢ Synchronise the description with the process changes

➢ Provide advices to improve the quality of the process

➢ Enlarge the supported BPMN syntax

Short-term

Mid-term

Long-term

Transversal

66

Regarding the generation of processes, we thought about several perspectives.

Perspectives

67

➢ Explore possibilities offered by scheduling techniques

➢ Look for better heuristics
➢ Extend the support (BPMN syntax, model of resources)

➢ Remove sequence graphs to increase the support

➢ Limit the usage of simulation (AI, SMT, analytics, …)

Short-term

Mid-term

Long-term

Regarding the refactoring of processes, we thought about several perspectives.

References [1/5]

➢ [BKO2010]: An Empirical Comparison of the Usability of BPMN and UML Activity
Diagrams for Business Users, Dominik Q. Birkmeier, Sebastian Klöckner, and
Sven Overhage, 2010.

➢ [BRJ2000]: The UML User Guide, Grady Booch, James Rumbaugh, and Ivar
Jacobson, 2000.

➢ [Davenport1993]: Process innovation: reengineering work through information
technology, Thomas Hayes Davenport, 1993.

➢ [DGKV2011]: Identifying Refactoring Opportunities in Process Model
Repositories, Remco M. Dijkman, Beat Gfeller, Jochen Malte Küster, and Hagen
Völzer, 2011.

➢ [DN2011]: jMetal: A Java Framework for Multi-objective Optimization, Juan José
Durillon, Antonio Jesus Nebro, 2011.

➢ [DRS2019]: A Rewriting Approach to Resource Allocation Analysis in Business
Process Models, Francisco Duran, Camilo Rocha, and Gwen Salaün, 2019

➢ [DRS2021]: Resource Provisioning Strategies for BPMN Processes: Specification
and Analysis Using Maude, Francisco Duran, Camilo Rocha, and Gwen Salaün,
2021

➢ [DS2022]: Optimization of BPMN Processes via Automated Refactoring,
Francisco Duran and Gwen Salaün, 2022.

➢ [FRPCP2013]: Graph-Based Business Process Model Refactoring, Maria
Fernandez-Ropero, Ricardo Pérez-Castillo, and Mario Piattini, 2013.

➢ [FSZ2024]: Dynamic Resource Allocation for Executable BPMN Processes
Leveraging Predictive Analytics, Yliès Falcone, Gwen Salaün, and Ahang Zuo,
2024.

References [2/5]

➢ [Geambasu2012]: BPMN vs. UML Activity Diagram for Business Process
Modeling, Cristina Venera Geambasu, 2012.

➢ [HC1993]: Reengineering the Corporation: A Manifesto for Business Revolution,
Michael Hammer and James Champy, 1993.

➢ [Jackson2020]: Understanding understanding and ambiguity in natural language,
Philip Jackson, 2020.

➢ [JMP1993]: Business Process Reengineering: BreakPoint Strategies for Market
Dominance, Henry J. Johansson, Patrick McHugh, and A. John Pendlebury, 1993.

➢ [KL2022]: Business Workflow Optimization through Process Model Redesign,
Akhil Kumar and Rong Liu, 2022.

References [3/5]

➢ [Lin1996]: On the Structural Complexity of Natural Language Sentences, Dekang
Lin, 1996.

➢ [NK2006]: Assessing Business Process Modeling Languages Using a Generic
Quality Framework, Anna Gunhild Nysetvold and John Krogstie, 2006.

➢ [OMG2011]: Business Process Model and Notation (BPMN), OMG, 2011.

➢ [RB1990]: Improving Performance: How to Manage the White Space on the
Organization Chart, Geary A. Rummler and Alan P. Brache, 1990.

➢ [RM2005]: Best Practices in Business Process Redesign: An Overview and
Qualitative Evaluation of Successful Redesign Heuristics, H. A. Reijers and S.
Liman Mansar, 2005.

References [4/5]

➢ [SM2007]: Refactoring BPMN Models: From `Bad Smells’ to Best Practices and
Patterns, Darius Silingas and Edita Mileviciene, 2007.

➢ [Smith1776]: An Inquiry into the Nature and Causes of the Wealth of Nations,
Adam Smith, 1776.

➢ [Taylor1911]: The Principles of Scientific Management, Frederick Winslow Taylor,
1911.

➢ [Weske2007]: Business Process Management: Concepts, Languages,
Architectures, Mathias Weske, 2007.

➢ [White2004]: Process Modeling Notations and Workflow Patterns, Stephen White,
2004.

References [5/5]

"En présence de mes pairs.
Parvenu à l'issue de mon doctorat en 'Informatique', et ayant ainsi pratiqué, dans
ma quête du savoir, l'exercice d'une recherche scientifique exigeante, en cultivant
la rigueur intellectuelle, la réflexivité éthique et dans le respect des principes de
l'intégrité scientifique, je m'engage, pour ce qui dépendra de moi, dans la suite de
ma carrière professionnelle quel qu'en soit le secteur ou le domaine d'activité, à
maintenir une conduite intègre dans mon rapport au savoir, mes méthodes et
mes résultats."

"In the presence of my peers.
With the completion of my doctorate in 'Computer science', in my quest for
knowledge, I have carried out demanding research, demonstrated intellectual
rigour, ethical reflection, and respect for the principles of research integrity.
As I pursue my professional career, whatever my chosen field, I pledge, to the
greatest of my ability, to continue to maintain integrity in my relationship to
knowledge, in my methods and in my results."

Scientific Integrity Oath

