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BPMN stands for Business Process Model and Notation.
But what is a business process?
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BPMN stands for Business Process Model and Notation.
But what is a business process?

“A business process [...] is a collection of related, structured activities 
or tasks performed by people or equipment in which a specific 
sequence produces a service or product (that serves a particular 
business goal) for a particular customer or customers”
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According to history, the first man to have ever evokated the term 
“business process” is the scottish economist Adam Smith in 1776.
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According to history, the first man to have ever evokated the term 
“business process” is the scottish economist Adam Smith in 1776.

“One man draws out the wire; another straights it; a 
third cuts it; a fourth points it; a fifth grinds it at the 
top for receiving the head; to make the head requires 
two or three distinct operations; to put it on is a peculiar 
business; to whiten the pins is another ... and the 
important business of making a pin is, in this manner, 
divided into about eighteen distinct operations, which, in 
some manufactories, are all performed by distinct 
hands, though in others the same man will sometimes 
perform two or three of them.”

In [Smith1776], he described the production of 
a pin as follows:
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Frederick Winslow Taylor

➢ standardization of processes
➢ systematic training
➢ clear definition of the roles of 

management and employees
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This desire to provide a rigorous, unified definition of business processes 
paved the way to the creation of a new discipline: the business process 
management.
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The term business process modelling was coined in the 1960s by Stanley 
Williams, but people were interested in modelling processes years before.
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More recently, another notation, called Business Process Management 
Notation (BPMN) [OMG2011], emerged, and became rapidly widely used 
by companies and institutions.
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➢ A workflow-based notation created in 2004 by the Business Process 

Management Initiative (BPMI) and the Object Management Group 
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But what is BPMN?

➢ It aims at representing business processes in a way that is 

understandable for both experienced and novice users.

➢ An ISO/IEC standard since version 2.0 in 2013.

➢ A workflow-based notation created in 2004 by the Business Process 

Management Initiative (BPMI) and the Object Management Group 

(OMG).
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Example of BPMN Process

Given the BPMN syntax, one can, for instance, write a business trip 
organization process as follows:
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organization process as follows:
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How to write a BPMN process?
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How to avoid wasting time designing?

11

~30m!



The mission 
paperwork should
be done before the 
hotel reservation!!!

How to match the expected behaviour?
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How to ensure syntactic/semantic correctness?

X

Syntactic
error!

Semantic
error!
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PhD Research Axes
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➢ How to write a BPMN process?

➢ How to avoid wasting time designing?

➢ How to match the expected behaviour?

➢ How to ensure syntactic/semantic correctness?

Modelling BPMN processes
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Is this process 
optimal?!
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Is this process 
optimal?!

➢ In the resource-free, durations-free, single instance context, yes!

How to optimise a BPMN process?
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But what if we enrich the process with:
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PhD Research Axes

➢ How can you optimise a BPMN process in real-world conditions?
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➢ How to avoid wasting time designing?

➢ How to match the expected behaviour?

➢ How to ensure syntactic/semantic correctness?

Modelling BPMN processes

Optimising BPMN processes



Contributions of the Thesis – Modelling of Processes

18



Contributions of the Thesis – Modelling of Processes

18

➢ An approach generating a BPMN process from a textual 
description of its requirements which:
■ Manipulates abstract syntax trees
■ Handles balanced BPMN processes

ICSOC’24



Contributions of the Thesis – Modelling of Processes

18

➢ An approach generating a BPMN process from a textual 
description of its requirements which:
■ Manipulates abstract syntax trees
■ Handles balanced BPMN processes

➢ A tool approach coupling:
■ Generation of the BPMN process
■ Verification based on textual descriptions of 

temporal logic properties

ICSOC’24

FSE’25



Contributions of the Thesis – Modelling of Processes

18

➢ An approach generating a BPMN process from a textual 
description of its requirements which:
■ Manipulates abstract syntax trees
■ Handles balanced BPMN processes

➢ A tool approach coupling:
■ Generation of the BPMN process
■ Verification based on textual descriptions of 

temporal logic properties

➢ An extension of the BPMN generation approach to:
■ Handle unbalanced processes
■ Provide strong semantical guarantees

ICSOC’24

FSE’25

TSE’25

(submitted)



Contributions of the Thesis – Modelling of Processes

18

➢ An approach generating a BPMN process from a textual 
description of its requirements which:
■ Manipulates abstract syntax trees
■ Handles balanced BPMN processes

➢ A tool approach coupling:
■ Generation of the BPMN process
■ Verification based on textual descriptions of 

temporal logic properties

➢ An extension of the BPMN generation approach to:
■ Handle unbalanced processes
■ Provide strong semantical guarantees

ICSOC’24

FSE’25

TSE’25

(submitted)

Focus



Contributions of the Thesis – Optimisation of Processes

19



Contributions of the Thesis – Optimisation of Processes

19

➢ An approach refactoring a BPMN process with:
■ Static analysis of the process
■ Computation of (theoretical) optimal pool of resources
■ Support for constant durations

SEFM’23



Contributions of the Thesis – Optimisation of Processes

19

➢ An approach refactoring a BPMN process with:
■ Static analysis of the process
■ Computation of (theoretical) optimal pool of resources
■ Support for constant durations

➢ An approach refactoring a BPMN process with:
■ Simulation-based analysis of the process
■ Involvement of the user in the decisions
■ Support for non-constant durations

SEFM’23

QRS’24



Contributions of the Thesis – Optimisation of Processes

19

➢ An approach refactoring a BPMN process with:
■ Static analysis of the process
■ Computation of (theoretical) optimal pool of resources
■ Support for constant durations

➢ An approach refactoring a BPMN process with:
■ Simulation-based analysis of the process
■ Involvement of the user in the decisions
■ Support for non-constant durations

➢ An extension of the second approach to:
■ Handle multiple optimisation criteria

SEFM’23

QRS’24

JSS’25

(submitted)



Contributions of the Thesis – Optimisation of Processes

19

➢ An approach refactoring a BPMN process with:
■ Static analysis of the process
■ Computation of (theoretical) optimal pool of resources
■ Support for constant durations

➢ An approach refactoring a BPMN process with:
■ Simulation-based analysis of the process
■ Involvement of the user in the decisions
■ Support for non-constant durations

➢ An extension of the second approach to:
■ Handle multiple optimisation criteria

SEFM’23

QRS’24

JSS’25

(submitted)

Focus



Plan

I/ Introduction

II/ Automated Generation of BPMN
Processes from Textual Requirements

III/ Human-Centered Refactoring-Based
Optimisation of BPMN Processes

IV/ Related Work

V/ Takeaways

VI/ References

20



Automated Generation of BPMN – Big Picture

21



Automated Generation of BPMN – Big Picture

21



Automated Generation of BPMN – Big Picture

21



First of all, an employee 
CollectGoods. Then, the client 

PayForDelivery while the 
employee PrepareParcel. 
Finally, the company can 
either DeliverByCar or 

DeliverByDrone (depending 
on the distance for example)

Textual Representation
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Global Picture of the Approach

22



First of all, an employee 
CollectGoods. Then, the client 

PayForDelivery while the 
employee PrepareParcel. 
Finally, the company can 
either DeliverByCar or 

DeliverByDrone (depending 
on the distance for example)

Textual Representation
of the Process

Large Language
Model (LLM)

Fine-

tuned!

Global Picture of the Approach

22



First of all, an employee 
CollectGoods. Then, the client 

PayForDelivery while the 
employee PrepareParcel. 
Finally, the company can 
either DeliverByCar or 

DeliverByDrone (depending 
on the distance for example)

Textual Representation
of the Process

- CollectGoods < (PayForDelivery, PrepareParcel)
- (PayForDelivery, PrepareParcel) < (DeliverByCar,
DeliverByDrone)

Expressions Following 
an Internal Grammar

Large Language
Model (LLM)

Fine-

tuned!

Global Picture of the Approach

22



First of all, an employee 
CollectGoods. Then, the client 

PayForDelivery while the 
employee PrepareParcel. 
Finally, the company can 
either DeliverByCar or 

DeliverByDrone (depending 
on the distance for example)

Textual Representation
of the Process

- CollectGoods < (PayForDelivery, PrepareParcel)
- (PayForDelivery, PrepareParcel) < (DeliverByCar,
DeliverByDrone)

Expressions Following 
an Internal Grammar

Abstract Syntax Trees

Large Language
Model (LLM)

Fine-

tuned!

Global Picture of the Approach

22



First of all, an employee 
CollectGoods. Then, the client 

PayForDelivery while the 
employee PrepareParcel. 
Finally, the company can 
either DeliverByCar or 

DeliverByDrone (depending 
on the distance for example)

Textual Representation
of the Process

- CollectGoods < (PayForDelivery, PrepareParcel)
- (PayForDelivery, PrepareParcel) < (DeliverByCar,
DeliverByDrone)

Expressions Following 
an Internal Grammar

Abstract Syntax Trees

Large Language
Model (LLM)

Fine-

tuned!

Dependency Graph
(Skeleton of the Process)

Global Picture of the Approach

22



First of all, an employee 
CollectGoods. Then, the client 

PayForDelivery while the 
employee PrepareParcel. 
Finally, the company can 
either DeliverByCar or 

DeliverByDrone (depending 
on the distance for example)

Textual Representation
of the Process

- CollectGoods < (PayForDelivery, PrepareParcel)
- (PayForDelivery, PrepareParcel) < (DeliverByCar,
DeliverByDrone)

Expressions Following 
an Internal Grammar

Abstract Syntax TreesBPMN Process

Large Language
Model (LLM)

Fine-

tuned!

Dependency Graph
(Skeleton of the Process)

Global Picture of the Approach

22



First of all, an employee 
CollectGoods. Then, the client 

PayForDelivery while the 
employee PrepareParcel. 
Finally, the company can 
either DeliverByCar or 

DeliverByDrone (depending 
on the distance for example)

Textual Representation
of the Process

Large Language
Model (LLM)

- CollectGoods < (PayForDelivery, PrepareParcel)
- (PayForDelivery, PrepareParcel) < (DeliverByCar,
DeliverByDrone)

Expressions Following 
an Internal Grammar

Abstract Syntax Trees
Dependency Graph

(Skeleton of the Process)BPMN Process

Refinement

Fine-

tuned!

Global Picture of the Approach

22



Detailed Approach – Step 1 – Description

First, the developer StartFeatureManagementSoftware (StFMS).
Then, he DescribeNewFeatureRequirements (DNFR). After that, the staff ValidateInternally (VI), and the 
client ValidateExternally (VE). Once the feature has been validated internally, the developer can 
CreateNewFeatureBranch (CNFB). Once the feature is completely validated (internally and externally), 
the staff can StartTechnicalDesign (STD). Instead of describing a new feature, validate it, create a new 
branch and start technical design, the developer can also LoadCurrentlyDevelopedFeature (LCDF). The 
FeatureDevelopment (FD) then eventually starts, followed by a DebuggingPhase (DP) useful to chase 
possible bugs before releasing the feature. This phase leads either to a BugCaseOpening (BCO), or to 
ReleaseFeature (RF) if no bug was found. If a bug case is opened, three different operations may start: 
either the first support level initiates a FirstStageDebugPhase (FSDP), which eventually leads to 
ClosingFirstLevelRequest (CFLR), or the second support level initiates a SecondStageDebugPhase 
(SSDP), which eventually leads to ClosingSecondLevelRequest (CSLR), or the third support level initiates 
a ThirdStageDebugPhase (TSDP), which eventually leads to ClosingThirdLevelRequest (CTLR). Once 
these phases are closed, either there is no bug anymore to correct, and the ReleaseFeature task (RF) 
occurs, or a new bug is found, leading to DebuggingPhase (DP) again. Also, the FirstStageDebugPhase 
(FSDP), SecondStageDebugPhase (SSDP) and ThirdStageDebugPhase (TSDP) and their closing can be 
repeated until a bug is properly corrected. Once ReleaseFeature (RF) occurred, the developer can either 
ShutdownFeatureManagementSoftware (ShFMS), or start again with the task 
DescribeNewFeatureRequirements (DNFR).

The user first has to write a textual description of the process-to-be.

23
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The LLM processes the description and returns a set of expressions 
following an internal grammar.
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These expressions are then mapped to their corresponding (reduced) 
abstract syntax trees (ASTs).
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The sequential information contained in the multiple ASTs is then gathered 
to obtain a cleaner and more compact representation of it, called 
dependency graph.
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This graph is then transformed into the corresponding BPMN process by 
adding a start event, one or several end events, and exclusive gateways.
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Detailed Approach – Step 7 – Refinement
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Detailed Approach – Step 7 – Refinement

However, this process is incomplete with regards to the expressions!

(DNFR, VI, VE, CNFB, STD) | LCDF (FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

The six tasks
are not in a loop!
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Detailed Approach – Step 7 – Refinement

However, this process is incomplete with regards to the expressions!

(DNFR, VI, VE, CNFB, STD) | LCDF (FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

The process
does not contain 
parallelism!

29



The next step thus consists in refining the generated process by adding to 
it all the missing information stated in the expressions, and parallelism.
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In a graph, a loop can be seen as a strongly connected component.
Detailed Approach – Step 7.2 – Explicit Loops
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Given our BPMN process, its restriction to the tasks belonging to expression

(FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

is:

Detailed Approach – Step 7.2 – Explicit Loops

33



Given our BPMN process, its restriction to the tasks belonging to expression

(FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

is:

Detailed Approach – Step 7.2 – Explicit Loops

33



Given our BPMN process, its restriction to the tasks belonging to expression

(FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

is:

Detailed Approach – Step 7.2 – Explicit Loops

33

Component 1



Given our BPMN process, its restriction to the tasks belonging to expression

(FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

is:

Detailed Approach – Step 7.2 – Explicit Loops

33

Component 1

Component 2



Given our BPMN process, its restriction to the tasks belonging to expression

(FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)∗

is:

Detailed Approach – Step 7.2 – Explicit Loops

33

Component 1

Component 2

Component 3



Detailed Approach – Step 7.2 – Explicit Loops

These components are then connected to create a single component.
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Detailed Approach – Step 7.2 – Explicit Loops
These new edges are then eventually added to the BPMN process to make 
the loop appear in it:
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Detailed Approach – Final Process

After applying these successive refinement steps, the process is complete.
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➢ 12k lines of Java code

Tool Support

38

➢ Tool available online
(https://lig-givup.imag.fr/)



Experiments were conducted on 200 examples, 25% coming from the PET 
dataset and the literature, and 75% handcrafted.

Experiments – Quality of the Generated Process
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Experiments – Quality of the Generated Process

Correct
processes

Ambiguous
processes

Incorrect
processes

An ambiguous process is a process that is not incorrect with regards 
to the description, but which does not correspond to the expectations 
of the experts.
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Parallelising: an obvious solution?
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Refactoring-related problematics
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➢ How can you preserve the logic/meaning of the original process?

➢ How can you preserve the structural semantics of the original 
process?

➢ How can you maximise the chances of the user to understand the 
refactored process?
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46

The user validates 
the task, so we can 
move it.

The user declines the 
task, so we propose a 
new task to move.

The first step consists in proposing a task to move to the user.
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The relocation of the task must preserve the structural semantics of the 

process.

Step 2 – Relocation of the Task

47

To facilitate this preservation, the relocation of the task is not performed on 

the BPMN process, but on another representation, called sequence graph.

Loop
Choice



Step 2 – BPMN to Sequence Graph

48



Step 2 – BPMN to Sequence Graph

48



Step 2 – BPMN to Sequence Graph

48



Step 2 – Refactoring Patterns

The selected task is moved thanks to 4 refactoring patterns.

49



Step 2 – Refactoring Patterns

The selected task is moved thanks to 4 refactoring patterns.

49

Task Between Nodes

Task Before/After Elements of a Node

Task in Parallel of Sub-Sequences

Task Inside Choices



Step 2 – Refactoring Patterns

The selected task is moved thanks to 4 refactoring patterns.

49

Task Between Nodes

Task Before/After Elements of a Node
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The second pattern consists in inserting the task in parallel of any non-empty 

subsequence of nodes of the graph.
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Step 2 – Structural Semantics Preservation

We showed in the manuscript that the refactoring patterns preserve the 
structural semantics of the process.
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⇒ There is no guarantee that this local optimum will lead to a global one!
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Iteration 2

P4,3

436 UT
P3,1
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446 UT
P1,2
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Based on this score, one or several processes of the current layer are kept, and 

used as basis for the computation of the next layer.

PO

P1

607 UT

P2 P3

P4
589 UT512 UT 685 UT

Iteration 1

532 UT

We obtain a process that is close to the optimal (446 UT / 436 UT) while 

fastening the computations.

Step 3 – Comparison bias solution: heuristics
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The resulting process is then proposed to the user.

The user validates 
the process ⇒ we 
propose a new task 
to move on it.

The user declines the 
process ⇒ we propose a 
new task to move on the 
previous process.



Step 3 – End of Refactoring Loop

When all the tasks of the process have been moved, or when the user decides 
to stop, the approach returns an optimised version of the original process.
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Tool Support

➢ 15k lines of Java code

➢ Executes in the backend of a NodeJS server running locally

59

➢ Freely available online
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Qualitative refactoring

[SM2007, DGKV2011, 

FRPCP2013]

Restructures a process 

to solve structural 
issues:

➢ soundness issues

➢ bad design

➢ duplicated parts

of the process

Resource optimisation

[DRS2019, DRS2021, 

FSZ2024]

Optimises a process by 

changing its number of 

available resources:

➢ statically

➢ runtime

➢ predictically

Quantitative refactoring

[RM2005, KL2022, 

DS2022]

Restructures a process 

to optimise its 

execution time:

➢ optional tasks

➢ duration reduction

➢ split/merge of 

tasks

➢ local patterns
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We propose an approach to generate 
BPMN processes:

➢ Fully automated, tested, and 

available online

➢ Correctly generating the process 

in more than 80% of the cases

➢ Providing guarantees regarding 

the semantics of the process

➢ Including behavioural verification 
facilities

Refact.
Patterns

Static Analysis
Optimal Pool of 

Resources

Non-Fixed 
Durations

Multi-
Criteria

One-
Shot

Single
Crite-
rion

Multiple
Relocations

User-in-
the-loop

Heuristic-
based
Search

We propose 3 approaches to refactor 
BPMN processes:



Perspectives

➢ Cross-check the generated expressions with other LLMs

➢ Add further information during generation (resources, 

durations, …)

➢ Synchronise the description with the process changes

➢ Provide advices to improve the quality of the process

➢ Enlarge the supported BPMN syntax

Short-term

Mid-term

Long-term

Transversal

66

Regarding the generation of processes, we thought about several perspectives.



Perspectives
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➢ Explore possibilities offered by scheduling techniques

➢ Look for better heuristics
➢ Extend the support (BPMN syntax, model of resources)

➢ Remove sequence graphs to increase the support

➢ Limit the usage of simulation (AI, SMT, analytics, …)

Short-term

Mid-term

Long-term

Regarding the refactoring of processes, we thought about several perspectives.
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"En présence de mes pairs.
Parvenu à l'issue de mon doctorat en 'Informatique', et ayant ainsi pratiqué, dans 
ma quête du savoir, l'exercice d'une recherche scientifique exigeante, en cultivant 
la rigueur intellectuelle, la réflexivité éthique et dans le respect des principes de 
l'intégrité scientifique, je m'engage, pour ce qui dépendra de moi, dans la suite de 
ma carrière professionnelle quel qu'en soit le secteur ou le domaine d'activité, à 
maintenir une conduite intègre dans mon rapport au savoir, mes méthodes et 
mes résultats."

"In the presence of my peers.
With the completion of my doctorate in 'Computer science', in my quest for 
knowledge, I have carried out demanding research, demonstrated intellectual 
rigour, ethical reflection, and respect for the principles of research integrity.
As I pursue my professional career, whatever my chosen field, I pledge, to the 
greatest of my ability, to continue to maintain integrity in my relationship to 
knowledge, in my methods and in my results."

Scientific Integrity Oath


