
Debugging of BPMN processes 
using coloration techniques

By Gwen SALAUN & Quentin NIVON

1



Introduction

What is BPMN? 

➢ A workflow-based notation created in 2004 by the Business Process Management Initiative (BPMI) 
and the Object Management Group (OMG).

➢ It aims at representing business processes in a way that is understandable for both experienced 
and novice users.

➢ An ISO/IEC standard since version 2.0 in 2013.

➢ A rich syntax:

Sequence Flow Initial Event End Event

Exclusive Gateway Inclusive Gateway Parallel Gateway Event-based Gateway

Task

Group

Association

Annotation

2



Context

➢ Companies are making use of the BPMN notation to represent their business processes.

➢ Some of them are interested in performing behavioral verifications of their BPMN 

processes.

Introduction

Existing solutions

➢ Nowadays, companies are able to verify the validity of temporal logic properties over their 

BPMN processes.

➢ To do so, they transform their BPMN processes into specifications understandable by a model 
checker which will verify the property.

➢ In the end, they get one or several counterexamples that violate the property.

Nonetheless, they are not expressed in BPMN notation.

3



Introduction

4

Motivations

➢ Expressing all the counterexamples in BPMN notation to make it understandable for 

the initial user.

➢ Remaining as syntactically close as possible to the original BPMN process.

➢ Being as minimal as possible, in terms of number of nodes, in the BPMN process 

returned to the user.



Plan

1. Preliminaries
1.1. BPMN sub-syntax
1.2. Model checking & Colored LTS
1.3. Full process

2. Solving approach
2.1. Global representation
2.2. Matching analysis
2.3. Unfolding only
2.4. Unfolding + Folding

3. Implementation
3.1. Generalities
3.2. Empirical study
3.3. Performance study

4. Conclusion

5



Preliminaries: BPMN sub-syntax

In this work, we use a restrained subset of the entire BPMN syntax.

The subset syntax used contains (or plan to contain):

- Gateways (exclusive, parallel, inclusive)

- Sequence Flows

- Tasks

- Events (start, end)

But does not contain (or plan to contain):

- Intermediary events

- Message-based gateways

- Message flows

- Associations

- Artifacts, data-objects

Occur in more than 90% of BPMN processes!
[Krishna, Poizat, Salaün – SCP 19]

Occur in less than 10% of BPMN processes.

6



The current work makes use of already existing techniques, 
such as model checking:

Preliminaries: Model Checking

7



Preliminaries: Colored LTS

❖ Key idea 1: transitions categorisation (3 types)
➢ correct transitions
➢ incorrect transitions
➢ neutral transitions

❖ Key idea 2: identification of faulty states
➢ choices between transitions leading to a correct or 

an incorrect part of the model
➢ Four kinds of faulty states:

Or Colored LTS (CLTS):

CLTS output from the CLEAR tool

8

Clearer representation of the CLTS output



Preliminaries: Full process
The whole counterexample generation process can be modeled as follows:

9



Plan

1. Preliminaries
1.1. BPMN sub-syntax
1.2. Model checking & Colored 

LTS
1.3. Full process

2. Solving approach
2.1. Global representation
2.2. Matching analysis
2.3. Unfolding only
2.4. Unfolding + Folding

3. Implementation
3.1. Generalities
3.2. Empirical study
3.3. Performance study

4. Conclusion
10



Solving approach: Global representation
The solving approach is a 3-step approach:

➢ First, we try to find a matching between the CLTS and the BPMN process.

➢ If no matching can be found, then the initial BPMN process is not directly colorable.
In such case, we generate a new BPMN process during the unfolding phase.

➢ Finally, we try to fold this BPMN process in order to reduce its number of nodes. 3

2

1

11



Solving approach: Matching analysis – Idea

Main idea

The purpose of this step is to verify if the initial BPMN process is directly colorable regarding the property.

Algorithmically

➢ We detect whether all the transitions of the CLTS having the same label are colored identically.

➢ If so, we try to associate each faulty state of the CLTS to a unique node of the BPMN process.

A matching exists!
Then the initial BPMN 
process is colored directly
and returned to the user

No matching exists.
Then we build a new BPMN 
process from the CLTS and 
try to minimize it

12



Example 1: A perfect matching is found
Step 1: Generation of the CLTS

Solving approach: Matching analysis – Examples

13



Match!

Solving approach: Matching analysis – Examples
Example 1: A perfect matching is found
Step 2: Matching computation

14



Solving approach: Matching analysis – Examples
Example 1: A perfect matching is found

Step 3: Coloration is performed: Starting from each first red or green transition, we color each reachable BPMN task.

15



Case 1

Solving approach: Unfolding
We transform the CLTS into a semantically equivalent BPMN process.
As the CLTS is colored, the generated BPMN process is colorable regarding the property.

Case 2

Case 3 Case 4

16



Drawback
In some cases, the generated BPMN process can be very large, which may limit the understanding of the 

problem for the user.

Solving approach: Unfolding

Unfolding

14 tasks 98 tasks 17



Main idea
In this phase, we try to reduce the size – in terms of number of nodes – of the unfolded BPMN process to 
make it more understandable for the user.

Our approach focuses on the detection of unfolded parallel gateways in order to replace them in the 

unfolded graph by their folded version.

Solving approach: Unfolding + Folding

Algorithmically

Unfolded 
gateway

Out-of-scope 
paths (set 1)

Out-of-scope 
paths (set 2)

Impure paths

Folded gateway
Out-of-scope paths

Impure paths

18



Solving approach: Unfolding + Folding – Example

Folding

98 tasks 26 tasks 19

Previous tasks

Previous tasks
Parallel tasks

Parallel tasksOut-of-scope 
tasks

Out-of-scope tasks



Solving approach: Unfolding + Folding – Example

Initial BPMN process (14 tasks) Returned BPMN process (26 tasks) 20



Plan

1. Preliminaries
1.1. BPMN sub-syntax
1.2. Model checking & Colored 

LTS
1.3. Full process

2. Solving approach
2.1. Global representation
2.2. Matching analysis
2.3. Unfolding only
2.4. Unfolding + Folding

3. Implementation
3.1. Generalities
3.2. Empirical study
3.3. Performance study

4. Conclusion
21



Prototype

The approach detailed in this presentation has been fully implemented and tested on more than 100 
BPMN processes. It consists of approximately 10,000 lines of Java code.

Steps

In this presentation, we did not detail all the steps of the approach, which contain a lot of processing 
phases. These steps are detailed in the below figure.

Implementation – Generalities

22



Implementation – Empirical study

3/14
=

21%

4/14
=

29%

Overall, the implemented part of the 
approach proposes the same BPMN 
process or a syntactically close one to 
the user in 50% of cases.

23



Implementation – Performance study

Worst-case 
execution time for 
real-world processes 
is 3s!

For a BPMN process 
containing 254 nodes, 
the total execution 
time approximates 3m, 
but only 2s are taken 
by the prototype!

For a BPMN process 
containing 43k nodes, 
the prototype starts 
showing its limits with 
an execution time of 
8m.

24



Plan

1. Preliminaries
1.1. BPMN sub-syntax
1.2. Model checking & Colored LTS
1.3. Full process

2. Solving approach
2.1. Global representation
2.2. Matching analysis
2.3. Unfolding only
2.4. Unfolding + Folding

3. Implementation
3.1. Generalities
3.2. Empirical study
3.3. Performance study

4. Conclusion

25



Conclusion

To conclude, we proposed in our approach a way of expressing all the counterexamples of 

a temporal logic property in BPMN notation, while providing the user a BPMN process that 

is as syntactically close as possible to the initial one.

We also provided an automated tool implementing all the proposed solutions, for which 

we assessed the scalability through a performance study.

Short-term improvements:

❖ Handle inclusive gateways 

Mid-term improvements:

❖ Support liveness properties

26



27

Questions


