By Gwen SALAUN & Quentin NIVON

Debugging of BPMN processes
using coloration techniques

\‘ renopte ‘
Curie |30 O i)y, | UGA

Introduction

Whatis BPMN? AD@\by

> Aworkflow-based notation created in 2004 by the Business Process Management Initiative (BPMI)

and the Object Management Group (OMG).

> |taims at representing business processes in a way that is understandable for both experienced

and novice users.
> AnISO/IEC standard since version 2.0in 2013.

> Arich syntax:

>—)tas'<—)O>_>O

Sequence Flow Task Initial Event End Event
€ >or{ : > <: :> <C> “@ or “@
Exclusive Gateway Inclusive Gateway Parallel Gateway Event-based Gateway

Message flow

A

—{

)—>

Message task"

L3

/

—» task |—>»

Association

I

Annotation

Introduction

Context

> Companies are making use of the BPMN notation to represent their business processes.

> Some of them are interested in performing behavioral verifications of their BPMN
processes.

Existing solutions

> Nowadays, companies are able to verify the validity of temporal logic properties over their
BPMN processes.

> Todoso, they transform their BPMN processes into specifications understandable by a model
checker which will verify the property.

> Inthe end, they get one or several counterexamples that violate the property.
Nonetheless, they are not expressed in BPMN notation.

Introduction

Motivations

> Expressing all the counterexamples in BPMN notation to make it understandable for
the initial user.

> Remaining as syntactically close as possible to the original BPMN process.

> Being as minimal as possible, in terms of number of nodes, in the BPMN process
returned to the user.

Plan

2. Solving approach

2.1. Global representation
2.2. Matching analysis
2.3. Unfolding only

2.4. Unfolding + Folding

Implementation
3.1. Generalities
3.2. Empirical study
3.3. Performance study

4. Conclusion

Preliminaries: BPMN sub-syntax

In this work, we use a restrained subset of the entire BPMN syntax.
The subset syntax used contains (or plan to contain):

v~ Gateways (exclusive, parallel, inclusive)
v~ Sequence Flows Occur in more than 90% of BPMN processes!
Vv~ Tasks [Krishna, Poizat, Salatin - SCP 19]

v~ Events (start, end)
But does not contain (or plan to contain):

x Intermediary events

x Message-based gateways
¢ Message flows > Occur in less than 10% of BPMN processes.
x Associations

x Artifacts, data-objects)

Preliminaries: Model Checking

The current work makes use of already existing techniques,
such as model checking:

False +
Counterexample

| Labelled
Specification |:> Transition System % J

(LTS) Model

Checker
Temporal logic M %

property

True

Preliminaries: Colored LTS

Or Colored LTS (CLTS):

% Keyidea 1: transitions categorisation (3 types) % Keyidea 2: identification of faulty states
> correct transitions > choices between transitions leading to a correct or
> incorrect transitions an incorrect part of the model
> neutral transitions > Four kinds of faulty states:
."“) <...". . > ¢ N 7 > él ->
\% kY \ \ir Legend:
» correct
? Q Q Q = = =» incorrect
P ENG) HINE) H) srere P neutral
Ne/ghbourhood ..--)
;QPut Recv |
ACTIVITY_108LJXA V"..ACTIVITY 630WHOS =
d N\ -:. D— > . AC.TIVITY IO:LJXA ’ ’ . 3 — -------- h’ 2
Rack ’ Send . . - . 4 % g
| ACTIVITY_RG486ED
- °] > - ACT'V'T\LSSRDAX?-"'ZCTIVITY WC651KP
AR l N
\Rec" __ Recvi - J Y - . ® AL — oy
Legend: e AGTIVITY_158POAX "
» correct
Q Q - - = incorrect CLTS output from the CLEAR tool Clearer representation of the CLTS output
H s = amsssass) neutral

Preliminaries: Full process

The whole counterexample generation process can be modeled as follows:

®.
L
e e { J .
‘9 . @ - @ |- ,‘-
® 9 - 9
; : ; des (0, 21, 16)
module AccountOpeningV5{bpmntypes) with "get" is (0, "PROCESSAPPLICATION"BLACK. 1)
(1, "CREATEPROFILE"BLACK, 2)
process init [begin:any, outf:any] is (1, :RETmEvEPROFILE‘:BLAoK. 3)
wvar ident: ID in begin ; outf (Zident of ID) end var g 'lDEN'CSF;:ggFO]l:E*I‘ BUiK.z\M
EApE. (4, "PREPAREACCOPENING™BLACK, 5)
§ . S (5. “BACKGROUNDVERIFICATION"BLACK. 6)
process final ['ncfany ﬁmsh.any] s (5, "RECEIVESUPPORTDOCUMENTS":BLACK, 7)
var ident: ID in (5, "UPDATERECORDS"BLACK_ 8)
loop (6, "RECEIVESUPPORTDOCUMENTS"BLACK. 9)
incf (?ident of ID); finish (6, "UPDATERECORDS"BLACK. 10)
end (7, "BACKGROUNDVERIFICATION"BLACK. 9)
end‘s:,p hoitrrs (7. "UPDATERECORDS"BLACK. 11)
inse" NOTIEYREJECTION true”] talse (8, "BACKGROUNDVERIFICATION"BLACK. 10)
i) dadlda (8. "RECEIVESUPPORTDOCUMENTS":BLACK, 11)
8 e (9, "UPDATERECORDS"BLACK. 12)
T 1 s By (e Tem po ral (10, "RECEIVESUPPORTDOCUMENTS"BLACK, 12)
loop begin {tident) ; finish (lident) end loop (11, "BACKGROUNDVERIFICATION"BLACK, 12)
end process L i (12, "REVIEWAPPLICATION":BLACK, 13)
ogIc (13°N:GR, "GENERATEACCOUNTNUMBER"GREEN, -1)
(13N:GA, "NOTIFYREJECTION":RED, 15)

5 fF Property (MCL)
S O St k1 e =Q l

BPMN Specification (LNT) CLTS
Process VBPMN ¥ || (ekeos o (AUTX format)

4

Plan

1. Preliminaries
1.1. BPMN sub-syntax
1.2. Model checking & Colored
LTS
1.3. Full process

3. Implementation
3.1. Generalities
3.2. Empirical study
3.3. Performance study

4. Conclusion

10

Solving approach: Global representation

The solving approach is a 3-step approach:

BPMN
Process

CLTS ——™>

>

>

First, we try to find a matching between the CLTS and the BPMN process. @

If no matching can be found, then the initial BPMN process is not directly colorable.
In such case, we generate a new BPMN process during the unfolding phase.

O

Finally, we try to fold this BPMN process in order to reduce its number of nodes. @

®

Matching
Analyzer

N\
SO

N\"itoo"b'

LS Yo
&,
%,,d %

+f

BPMN
Colorator

®

BPMN
Unfolder

4

Initial BPMN
colored

Unfolded
BPMN

E—

(\\
@ Oy

BPMN Folder

%,

N |
0
%y, °’ce ’

. Colorator |

BPMN Folded BPMN
Colorator | colored

BPMN 3 Unfolded BPMN
colored

11

Solving approach: Matching analysis - Idea

Main idea

The purpose of this step is to verify if the initial BPMN process is directly colorable regarding the property.

Algorithmically
> We detect whether all the transitions of the CLTS having the same label are colored identically.

> |fso,we try to associate each faulty state of the CLTS to a unique node of the BPMN process.

v) &

A matching exists! No matching exists.
Then the initial BPMN Then we build a new BPMN
process is colored directly process from the CLTS and

and returned to the user try to minimize it
12

Solving approach: Matching analysis - Examples

Example 1: A perfect matchingis found Retrieve CAnaIyse
. Customer ustomer
Step 1: Generation of the CLTS Profile Profile
- . ~Process e T Identify
cmem e -, Application i ‘ Account

Update Info o
Records 4

Receive
Support

Prepare
Account
Opening

Background \ . .
Verification ./

Review
Application

Review

aratel Kateway

Notify

[lj
us)
D,
@
Q
=
-]

Generate
Account
v Number

Send
Online Activate

Starter Kit Account
arter Ki >/16\ ;@
13

Formula .

G

+ | o
[true*.NOTIFYREJECTION.true*] false Yeaef

Solving approach: Matching analysis - Examples

Example 1: A perfect matching is found
Step 2: Matching computation

Retrieve Analyse
Customer Customer
Profile Profile
Process e T Identify
Application """ Create Profile =~ " Account
Update Info
Records ;
Receive !
: Support i Prepare
., Documents Account
Background i Opening
Verification . Update ™., i
Info

Records

Update

Receive
Support
..., Documents

Background
Verification &
Review

Application :

Support
"'-A.‘pocuments

Updat.é"""”-
Info

_~"Request Additional
Infos

Existing
Customer?
@ 6
Retrieve Customer “—Analyse Customer
Process <X Yes Profile Profile
Existing fustomer
No

“Create Profile <X

~

Identify Account Type

Prepare Account
Opening

fa)

“Request Additional
Info

4

Paralel Gateway

~
2,

"Receive Support

Documents
f3))
Update Info Records + Application
Parallel.raleway
=

Match!

Notfy + ™. = e
Rejection , T ——
! Generate ™,
- Account Send
y Number Online Activate
N TR SarerKil Account

Starter Kit
» 1

Pt
' \
v 14,
\ ’

Verification

Generate Account
Number

_—

Send Starter Kit

:l Activate Account

Notify Rejection

14

Solving approach: Matching analysis - Examples

Example 1: A perfect matchingis found

Step 3: Coloration is performed: Starting from each first red or green transition, we color each reachable BPMN task.

15

Solving approach: Unfolding

We transform the CLTS into a semantically equivalent BPMN process.
As the CLTS is colored, the generated BPMN process is colorable regarding the property.

,—\ ——

A A
— ~——— (3
e C N
) > B)
B & & J B

J

>

-

_J = S

Formula Formula

o
>

[true*.A.true*.B.true*] false [true*.A.true*.B.true™] false

~

CEDF e
o (- L — e

(

Formula

o
vals | o infiart)

[true*.A.true] false L

[true*.A.true™.B.true*.A.true*.B.true*] false

Solving approach: Unfolding

Drawback

In some cases, the generated BPMN process can be very large, which may limit the understanding of the

problem for the user.

Formula

[true*. PROCESSAPPLICATION.true*. CREATEPROFILE.true*] false

14 tasks

Unfolding

98 tasks

17

Solving approach: Unfolding * Folding

Main idea

In this phase, we try to reduce the size - in terms of number of nodes - of the unfolded BPMN process to

make it more understandable for the user.

Our approach focuses on the detection of unfolded parallel gateways in order to replace them in the

unfolded graph by their folded version.

Algorithmically Out-of-scope
paths (set 1)
Unfolded e » D
gateway J Folded gateway
/ . ——
A B X E F A
. -
) +
B A X C D)
o) < el
X /\ E " F .)
1 -of- " G » H
G H Out-of-scope | | |
paths (set 2)
Impure paths p 5 .
|) A

Out-of-scope paths

C D]

= F J

Impure paths

18

Solving approach: Unfolding *+ Folding - Example

fcﬂjﬂ Parallel tasks

Previous tasks
Parallel tasks

19

Solving approach: Unfolding *+ Foldin

[

Start

Analyse
Customer Profile

tion

oo _
)
Process es Retrieve
Aoeaon Custome Pt
Create Profile
=2 prepare
N
Opening
e —
Receive
Support
Documents
—
—
Update Info Review
Records i
—
—
Shacigrouns
Verification
O JU— Sond onie

Initial BPMN process (14 tasks)

&
Generate
Account Number

X Is Appication
‘Status Valid?

Prepare
Account
Opening

‘=dntify Account
Type

Analyse
Customer Profile

~
Retrieve
Customer Profile

@

Notify Rejection

Process
Application

" Create Profile

B, Prepare

Account
Opening

Q)
Receive

Suppor
Documents

i

)
“3ackground
Verification

)
“pdate Info
Records

g“unmma Info

Records

Review

Application

g - Example

Notify Rejection

= o)
Review ") Generate Jend Offline e ‘
Application Account Number Starter Kit Sk eoou
) Generate ic:;end Offiine:
Application Account Number Starter Kit

B fevem
Application

3
J—D{‘A?hvaxe Account

ify Rejection

Returned BPMN process (26 tasks)

20

Plan

1.

Preliminaries
1.1. BPMN sub-syntax
1.2. Model checking & Colored
LTS
1.3. Full process

Solving approach

2.1. Global representation
2.2. Matching analysis
2.3. Unfolding only

2.4. Unfolding + Folding

4. Conclusion

21

Implementation - Generalities

Prototype

The approach detailed in this presentation has been fully implemented and tested on more than 100
BPMN processes. It consists of approximately 10,000 lines of Java code.

Steps

In this presentation, we did not detail all the steps of the approach, which contain a lot of processing
phases. These steps are detailed in the below figure.

[LTSToGraph

DirectWriter.
writelnitial
BpmnFile()

f
AutxParser. A;z(nF;ar;.:r
L parse() Graph()
Matchi
BpmnParser. ListToGraph. LTDSJ?;?JSF GraphToAutx. Ana|y£?
parse() convert() Graph() convert() epvesenmons
'
AutxParser.
Aub;}r)Saergef. generate
L p Graph()

Colorator.
colorBPMN()

Matching
Found?

AutxToBPMN.
convert()

Graphical

Colorator. GraphToList. Generation
colorBPMN() convert() Writer.
write()

¥ _/ * W P
. Matching 3 Mz, Coloratlon Post-processing
Pre-processing Analysis Unfolding mirimize(
h—v—l

Folding 22

Implementation - Empirical study

BPMN Example Directly Colorable | Foldable
1. Account Opening X N/A
2. Publication Process X N/A
3. Credit Offer X N/A
4. Vacations Booking X (12/20)
5. Account Opening X (8/8) Overall, the implemented part of the
6. Plane Entry X (313) approach proposes the same BPMN
9. WIFUTREE P {ERN On KA process or a syntactically close one to

8. Denoising Process
9. Buying Process
10. Login Process
11. Support Ticket

12. Steel Transformation

13. Business Process

14. Job Hiring

the user in 50% of cases.

11

3/14 4/14

21% 29%

Implementation - Performance study

Time Time
Number | Number | Number taken by | Global | takenby | Global
Number of of of Time Time prototype time prototype time
of elements | elements | elements | taken by | taken by | without | without with with
BPMN in without with VBPMN | CLEAR | folding folding folding | folding
BPMN Example elements | CLEAR folding folding (s) (s) (s) (s) (s) (s)
T ——
1. Vacations Booking 13 506 (aeyr—
2. Account Opening 22 1.209 1.209
3. Publication Process 20 1.351 1.351
4. Steel Transformation 42 1.475 1.478
5. Plane Entry 27 2.235 2.235
6. Mortgage Application 15 1.974 1.974
7. Denoising 16 1.756 1.756
8. Credit Offer 15 1.004 1.004
9. Buying Process 29 1.540 1.540
10. Business Process 15 1.325 1.325 /
11. Job Hiring 29 1.798 1.7
12. Login Process 17 1204 _~1.204
13. Support Ticket 22 14317 1.431
14. Generated Large 1 62 140 51 62 15.98 0.164 1.254 17.40 _L~"1.881 18.03
15. Generated Large 2 126 284 100 126 32.04 2.080 1.262 33- 1.376 33.50
16. Generated Large 3 254 572 197 254 165.4 6.461 | (1.790 Y 173.6 2440 (1742
17. Generated Large 4 510 1148 390 510 902.3 124.3 302% 1030 3.643 [TTO30
18. Generated Parallel 1 10 86 27 37 12.21 0.059 0.999 13.27 1.034 13.30
21. Generated Parallel 2 19 529 203 11582 13.07 0.086 1.807 14.96 19.76 32.92 —
22. Generated Parallel 3 20 606 233 23163 13.15 0.089 2.009 F5-34——8ZBR | 95.92
23. Generated Parallel 4 21 683 264 |(43614) 13.23 0.088 2.678 16.00 | 466.8) 4801 I
24. Generated Parallel 5 22 770 298 87229 13.61 0.082 4.088 17.78 3948 3961
25. Generated Parallel 6 23 857 333 165307 17.81 0.122 6.271 24.20 10100 10117

Worst-case
execution time for
real-world processes
is 3s!

For a BPMN process
containing 254 nodes,
the total execution
time approximates 3m,
but only 2s are taken
by the prototype!

For a BPMN process
containing 43k nodes,
the prototype starts
showing its limits with
an execution time of
8m.

24

Plan

1.

Preliminaries
1.1. BPMN sub-syntax
1.2. Model checking & Colored LTS
1.3. Full process

Solving approach
2.1. Global representation
2.2. Matching analysis
2.3. Unfolding only
2.4. Unfolding + Folding

Implementation
3.1. Generalities
3.2. Empirical study
3.3. Performance study

25

Conclusion

To conclude, we proposed in our approach a way of expressing all the counterexamples of
a temporal logic property in BPMN notation, while providing the user a BPMN process that
is as syntactically close as possible to the initial one.

We also provided an automated tool implementing all the proposed solutions, for which
we assessed the scalability through a performance study.

Short-term improvements:

« Handleinclusive gateways

Mid-term improvements:

% Support liveness properties

26

Questions

27

