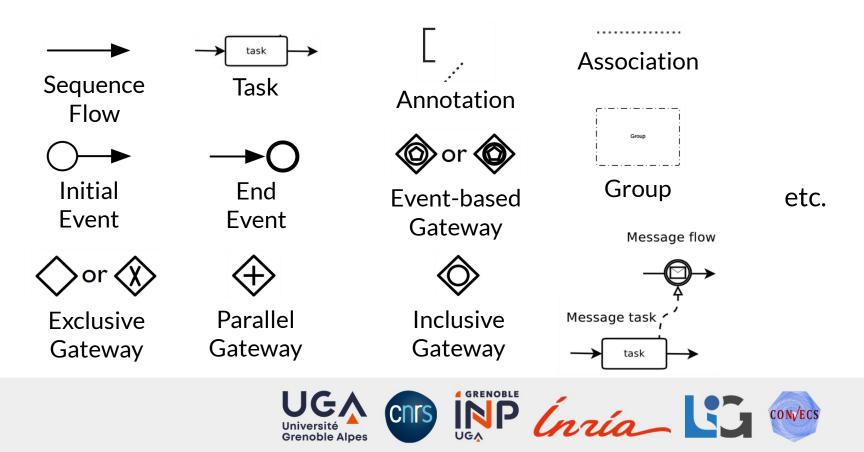
LLM-Based Generation of BPMN Workflows From Textual Descriptions

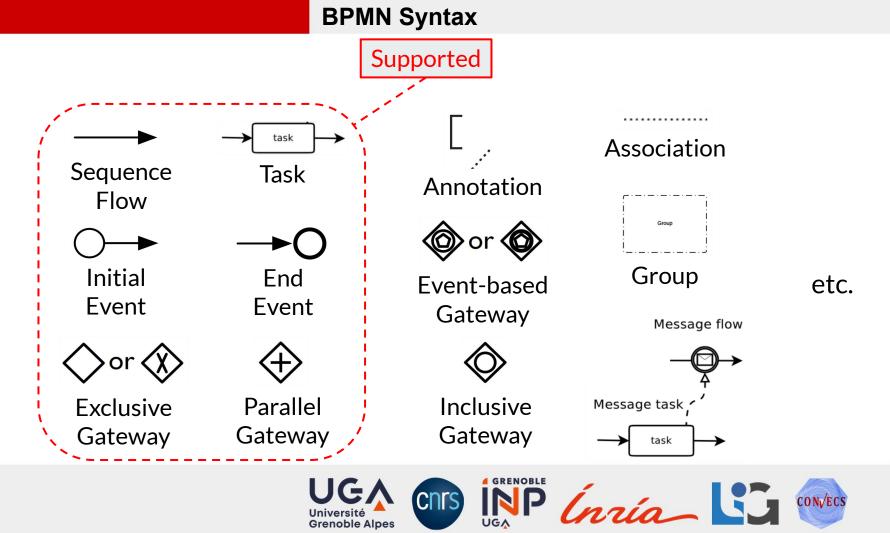
NIVON Quentin, SALAÜN Gwen

Introduction

What is **BPMN**?



A workflow-based notation created in 2004 by the Business Process Management Initiative (BPMI) and the Object Management Group (OMG).


- It aims at representing business processes in a way that is understandable for both experienced and novice users.
- > An **ISO/IEC standard** since version 2.0 in 2013.

BPMN Syntax

3

Context

 Companies are making use of the BPMN notation to represent their business processes.

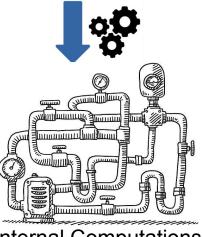
They hire experts to analyse and design the most adequate BPMN process according to their needs.

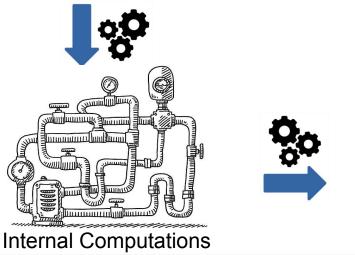
> These processes are often **syntactically/semantically incorrect**.

> What if you do not know **how to write BPMN**?

What if you do not want to spend time designing your BPMN process graphically?

How can you be sure that your BPMN process is syntactically/semantically correct?




Internal Computations

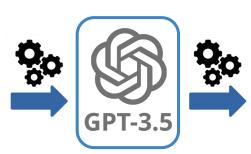
10

First of all, an employee CollectGoods. Then, the client PayForDelivery while the employee PrepareParcel. Finally, the company can either DeliverByCar or DeliverByDrone (depending on the distance for example)

Textual Representation of the Process

First of all, an employee CollectGoods. Then, the client PayForDelivery while the employee PrepareParcel. Finally, the company can either DeliverByCar or DeliverByDrone (depending on the distance for example)

Textual Representation of the Process



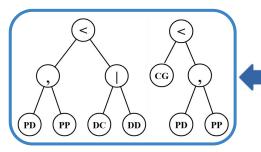
Large Language Model (LLM)

First of all, an employee CollectGoods. Then, the client PayForDelivery while the employee PrepareParcel. Finally, the company can either DeliverByCar or DeliverByDrone (depending on the distance for example)

Textual Representation of the Process

Large Language Model (LLM) CollectGoods < (PayForDelivery, PrepareParcel)
 (PayForDelivery, PrepareParcel) < (DeliverByCar, DeliverByDrone)

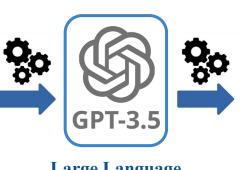
Expressions Following an Internal Grammar


First of all, an employee CollectGoods. Then, the client PayForDelivery while the employee PrepareParcel. Finally, the company can either DeliverByCar or DeliverByDrone (depending on the distance for example)

Textual Representation of the Process

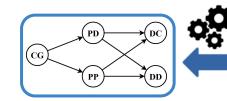
Large Language Model (LLM) CollectGoods < (PayForDelivery, PrepareParcel)
 (PayForDelivery, PrepareParcel) < (DeliverByCar, DeliverByDrone)

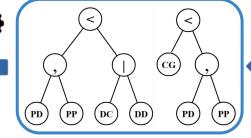
Expressions Following an Internal Grammar



Abstract Syntax Trees

First of all, an employee CollectGoods. Then, the client PayForDelivery while the employee PrepareParcel. Finally, the company can either DeliverByCar or DeliverByDrone (depending on the distance for example)

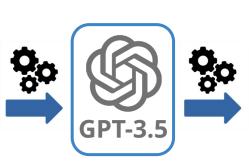

Textual Representation of the Process


Large Language Model (LLM) CollectGoods < (PayForDelivery, PrepareParcel)
 (PayForDelivery, PrepareParcel) < (DeliverByCar, DeliverByDrone)

 $\langle E \rangle ::=$ $(\langle E \rangle)$ t $| (\langle E_1 \rangle) *$ $\langle E_1 \rangle \langle op \rangle \langle E_2 \rangle$ '&' ' < 'ډ , $\langle op \rangle ::=$

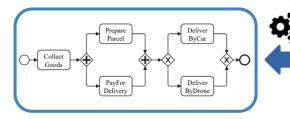
Expressions Following an Internal Grammar

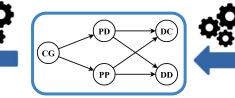
Dependency Graph


Abstract Syntax Trees

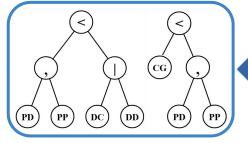
CON/ECS

First of all, an employee CollectGoods. Then, the client PayForDelivery while the employee PrepareParcel. Finally, the company can either DeliverByCar or DeliverByDrone (depending on the distance for example)


Textual Representation of the Process


Large Language Model (LLM)

- CollectGoods < (PayForDelivery, PrepareParcel) - (PayForDelivery, PrepareParcel) < (DeliverByCar, DeliverByDrone)


Expressions Following an Internal Grammar

BPMN Process

Dependency Graph

Abstract Syntax Trees

CON/ECS

The user first has to write a **textual description** of the process-to-be.

First, the banker either <u>CreateProfile</u> (CP) for the user, or, if it is not needed, he <u>RetrieveCustomerProfile</u> (RCP) which triggers the system to perform the <u>AnalyseCustomerProfile</u> (ACP) task. Then, the user executes the task <u>ReceiveSupportDocuments</u> (RSD) so that the system can start <u>UpdateInfoRecords</u> (UID) and perform a <u>BackgroundVerification</u> (BV). If the verification finds missing or incorrect information, the system <u>RequestAdditionalInfo</u> (RAI) to the user, who has to <u>ReceiveSupportDocuments</u> (RSD) again. Otherwise, the process ends with <u>CreateAccount</u> (CA).

The textual description is then given to a (fine-tuned) LLM (GPT 3.5 atm).

First, the banker either $\underline{\text{CreateProfile}}$ (CP) for the user, or, if it is not

needed, he <u>RetrieveCustomerProfile</u> (RCP) which triggers the system to perform the <u>AnalyseCustomerProfile</u> (ACP) task. Then, the user executes the task <u>ReceiveSupportDocuments</u> (RSD) so that the system can start <u>UpdateInfoRecords</u> (UID) and perform a <u>BackgroundVerification</u> (BV).

If the verification finds missing or incorrect information, the system <u>RequestAdditionalInfo</u> (RAI) to the user, who has to <u>ReceiveSupportDocuments</u> (RSD) again.

Otherwise, the process ends with CreateAccount (CA).

GPT - 3.5

The textual description is then given to a (fine-tuned) LLM (GPT 3.5 atm).

First, the banker either $\underline{\text{CreateProfile}}$ (CP) for the user, or, if it is not

needed, he <u>RetrieveCustomerProfile</u> (RCP) which triggers the system to perform the <u>AnalyseCustomerProfile</u> (ACP) task. Then, the user executes the task <u>ReceiveSupportDocuments</u> (RSD) so that the system can start <u>UpdateInfoRecords</u> (UID) and perform a <u>BackgroundVerification</u> (BV).

If the verification finds missing or incorrect information, the system <u>RequestAdditionalInfo</u> (RAI) to the user, who has to <u>ReceiveSupportDocuments</u> (RSD) again.

Otherwise, the process ends with CreateAccount (CA).

The LLM processes the description and returns a **set of expressions** following an **internal grammar**.

Given our description, the LLM returns three expressions:

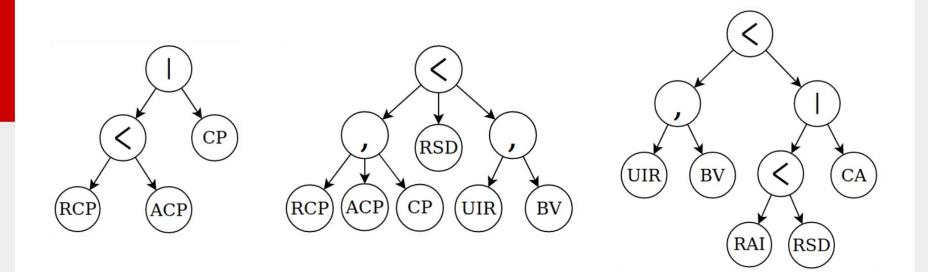
(RetrieveCustomerProfile < AnalyseCustomerProfile) | CreateProfile

Given our description, the LLM returns three expressions:

(RetrieveCustomerProfile < AnalyseCustomerProfile) | CreateProfile

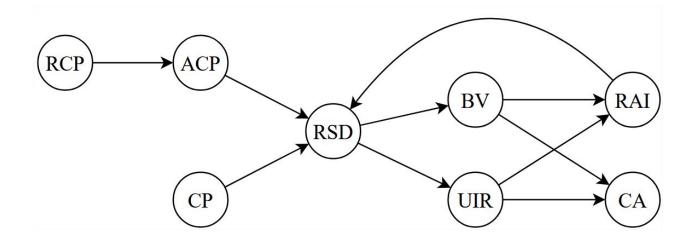
(RetrieveCustomerProfile, AnalyseCustomerProfile, CreateProfile) <
(ReceiveSupportDocuments < (UpdateInfoRecords, BackgroundVerification))</pre>

Given our description, the LLM returns three expressions:

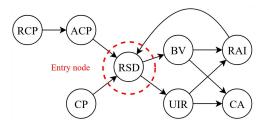

(RetrieveCustomerProfile < AnalyseCustomerProfile) | CreateProfile

(RetrieveCustomerProfile, AnalyseCustomerProfile, CreateProfile) <
(ReceiveSupportDocuments < (UpdateInfoRecords, BackgroundVerification))</pre>

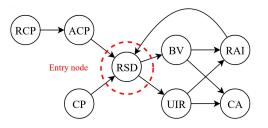
(UpdateInfoRecords, BackgroundVerification) < ((RequestAdditionalInfo < ReceiveSupportDocuments) | CreateAccount)

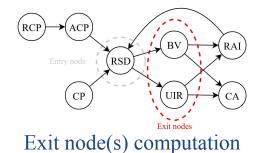


These expressions are then **mapped to** their corresponding **abstract syntax trees (ASTs)**.

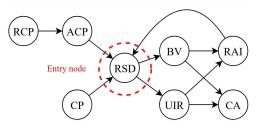


The **sequential information** contained in the multiple ASTs is gathered to obtain a **cleaner** representation of it, called **dependency graph**.

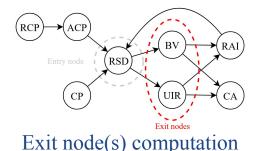

If the dependency graph **contains loops**, they are **analysed**, and all the **information needed to reconstruct** them is extracted.

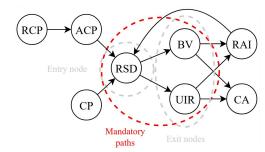

Entry node(s) computation

If the dependency graph **contains loops**, they are **analysed**, and all the **information needed to reconstruct** them is extracted.



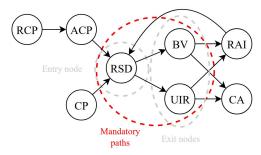
Entry node(s) computation

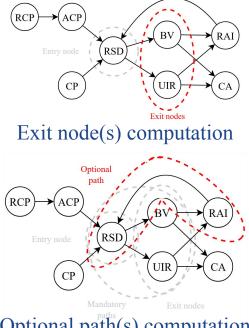




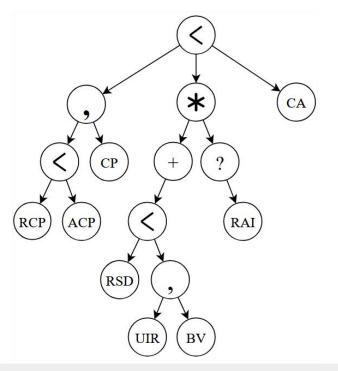
If the dependency graph **contains loops**, they are **analysed**, and all the **information needed to reconstruct** them is extracted.

Entry node(s) computation

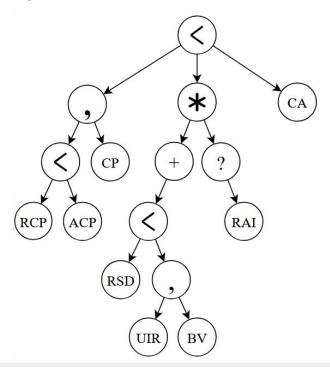

Mandatory path(s) computation


If the dependency graph **contains loops**, they are **analysed**, and all the **information needed to reconstruct** them is extracted.

Entry node(s) computation

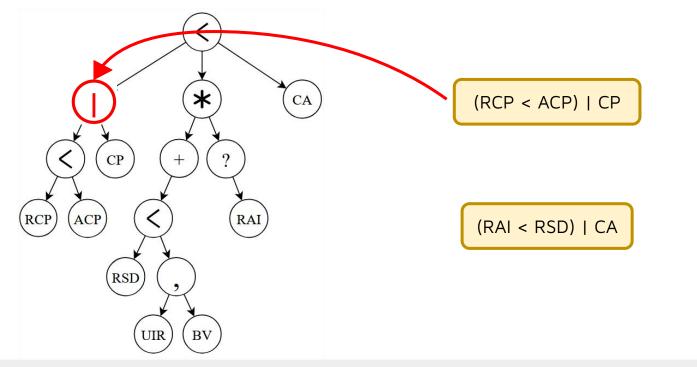

Mandatory path(s) computation

Optional path(s) computation

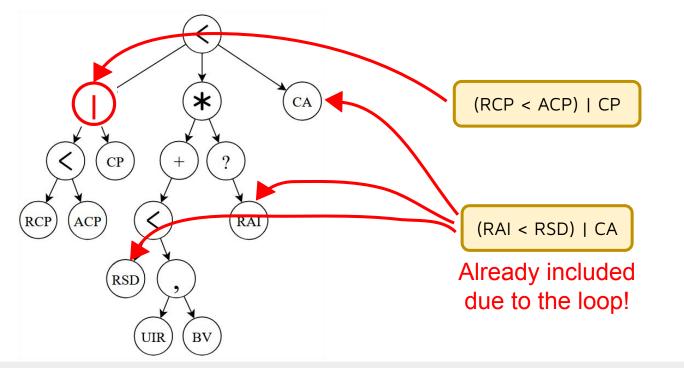


Once the loops have been retrieved, the **AST corresponding to the dependency graph** is built from the dependency graph.

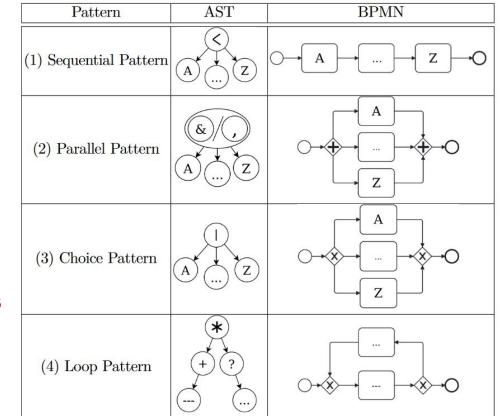
The **ultimate step** to obtain an AST containing all the information belonging to the original expressions consists in **inserting the choices**.

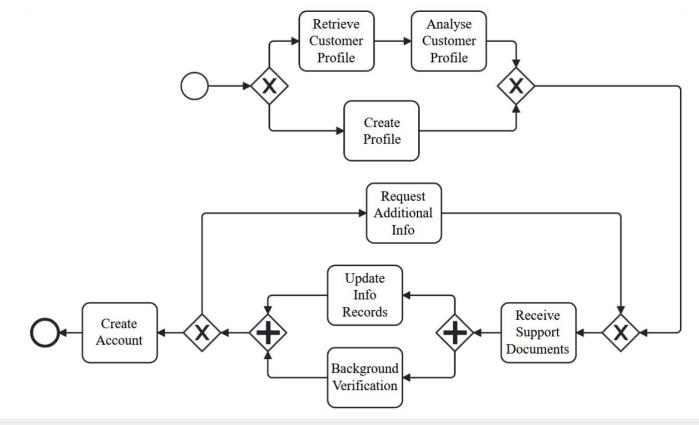


(RAI < RSD) | CA

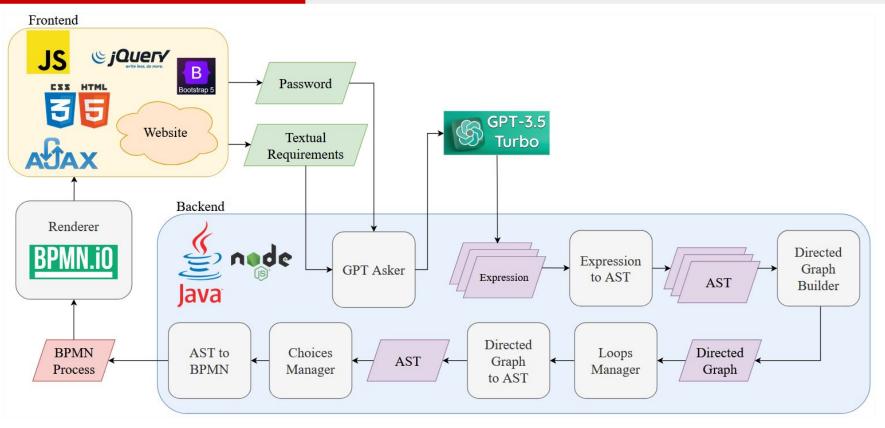


The **ultimate step** to obtain an AST containing all the information belonging to the original expressions consists in **inserting the choices**.


The **ultimate step** to obtain an AST containing all the information belonging to the original expressions consists in **inserting the choices**.

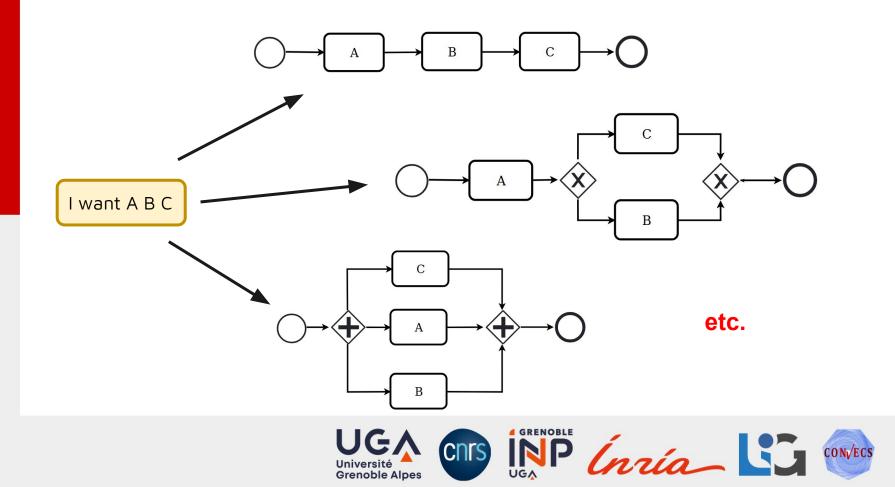

Now that the AST contains the choices, the **BPMN process is** ready to be generated.

To do so, **patterns** are applied recursively to the merged AST, **starting from the deepest nodes** (leafs).



Detailed Solution – Result

Tool – Presentation



Correct	An	Ambiguous		Incorrect		
processes	pr	processes		processes		
Tool/Model	 ✓ 	?	×	Avg. Exec. Time (s)		
Our tool	78.5%	8%	13.5%	4.07		
ProMoAI	50%	8.7%	41.2%	24.7		
Gemini	32.2%	8.1%	59.7%	8.32		
GPT-4-turbo	66.6%	21.1%	12.2%	19.2		

An ambiguous process is a process that is not incorrect with regards to the description, but which does not correspond to the expectations of the experts.

Tool – Experiments: Ambiguous Processes

The experiments conducted showed **14 incorrectly generated processes**. To understand the **source of this incorrect generation**, we **analysed the constraints** returned by GPT in these 14 cases.

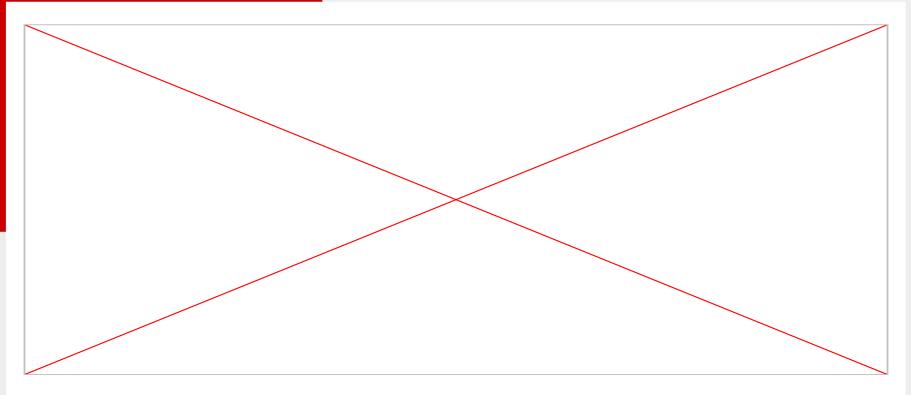
	Missing constraint	Added constraint	Modified constraint
Total	9	17	6
Average	0.64	1.21	0.43

Tool – Experiments: Unnamed Tasks

The last phase of these experiments consisted in **analysing the quality of the tool when the description is raw** (i.e., the tasks of the description are not named beforehand).

First, the banker either <u>CreateProfile</u> (CP) for the user, or, if it is not needed, he <u>RetrieveCustomerProfile</u> (RCP) which triggers the system to perform the <u>AnalyseCustomerProfile</u> (ACP) task.

First, the banker either creates a profile for the user, or, if it is not needed, he retrieves the customer profile which triggers the system to analyse it.



These experiments showed a degradation of 16% of the quality of the results when tasks are unnamed, for three different reasons:

- GPT may introduce unnecessary tasks
- GPT may remove desired tasks
- GPT may not recognise that two distinct portions of text correspond to the same task, thus creating two different tasks

Tool – Online Version

Link: https://quentinnivon.github.io/pages/givup.html

Conclusion

In this work, we proposed an approach aiming at automatically designing syntactically and semantically correct BPMN processes from a textual description of the requirements.

We already worked on several perspectives of this work:

- Get rid of ASTs to allow more complex constructs (intricate loops/unbalanced gateways)
- Formalise the transformation operations
- Add new features (such as model checking of textual properties)

While some others are still **ongoing**:

• Adapt the description to (visual) process changes $\left. \right>$ [

David's work

Inría 🖸

CON/ECS