
Patching Liveness Bugs
in Concurrent Programs

By Irman FAQRIZAL, Quentin NIVON & Gwen SALAUN

1



Context

➢ Designing and developing distributed softwares nowadays is a tedious and error-prone 
task due to the increasing complexity of the softwares.

➢ We need ways of detecting automatically such bugs in concurrent programs.

Introduction

Existing solutions

➢ Model checking is a well-known technique that can be used to chase violations of temporal 
logic formulas in such specifications.

➢ Model checkers return a trace that is a counterexample of the given property.

➢ However, understanding and correcting this bug can be a hard and painful task.

2



Introduction

Motivations

➢ Detect all violations of a liveness property and propose a correction of the 

specification.

➢ Propose a correction which is as simple as possible.

➢ Propose a correction that is as minimal as possible in terms of number of changes in 

the original specification.

3



Plan

1. Preliminaries
1.1. Model checking
1.2. Counterexample LTS
1.3. Single Inevitable Execution Property
1.4. Patch

2. Solving approach
2.1. Global Representation

2.2. Transition Sets Computation

2.3. Patches Computation

3. Implementation
3.1. Performance study

4. Conclusion
4



Preliminaries: Model Checking

5



Preliminaries: Counterexample LTS

❖ Key idea 1: transitions categorisation (3 types)
➢ correct transitions
➢ incorrect transitions
➢ neutral transitions

❖ Key idea 2: identification of faulty states
➢ choices between transitions leading to a correct or 

an incorrect part of the model
➢ Four kinds of faulty states:

CLTS output from the CLEAR tool Clearer representation of the CLTS output

6



Preliminaries: Single Inevitable Execution Property

A single inevitable execution property is a temporal logic formula stating that the action 
belonging to the property should appear at least once in every trace of the specification.

This kind of property is one of the most used liveness property in practice.
[Avrunin, Corbett, Dwyer – ICSE’99]

It can be written as follows:

INEVITABLE(“action”) mu X . (< true > true and [ not "action" ] X) ◇action
Textual representation MCL representation LTL representation

7



Preliminaries: Patch

Given a specification S and a single inevitable execution property P = INEVITABLE(“action”),
a patch is defined as a set of actions of S before which the action of the inevitable property 
should be put in order to correct the specification (i.e., make it compliant with the property).

INEVITABLE(“LOG”)

Possible patches:

● START
● RUN + FINISH
● …

8



Plan

1. Preliminaries
1.1. Model checking

1.2. Counterexample LTS

1.3. Single Inevitable Execution Property

1.4. Patch

2. Solving approach
2.1. Global Representation
2.2. Transition Sets Computation
2.3. Patches Computation

3. Implementation
3.1. Performance study

4. Conclusion
9



Solving approach: Global representation

The solving approach is a 2-step approach:

➢ First, we compute several transition sets needed for the computation of patches.

➢ Then, we compute the set of patches correcting the specification. 2

1

1 2

10



Solving approach: Transition Sets Computation – Definition

The purpose of this step is to compute three transition sets that we will use to compute the 
patches of the specification.
These three sets are the set of:

❖ All Incorrect Transitions (AIT), which contains all the incorrect transitions of the 
CLTS.

❖ First Incorrect Transitions (FIT), which is a subset of AIT containing all the incorrect 
transitions outgoing from faulty states.

❖ Exclusively Incorrect Transitions (EIT), which is a subset of FIT containing all the 
incorrect transitions outgoing from faulty states for which there exists no other 
transition with the same label that is either correct or neutral in the CLTS.

Finally, we recall that EIT ⊆ FIT ⊆ AIT.

11



Solving approach: Transition Sets Computation - Example

INEVITABLE(“LOG”)

AIT = {FINISH, RUN}

FIT = {FINISH, RUN}

EIT = {}

12



Solving approach: Computation of Patches – Intuition

The intuition of this step is built on top of the notion of reachability between transitions.
A transition is said to be reachable from another transition as long as there exists several states 
(or transitions) connecting these transitions.

is reachable from

is reachable from

● “FINISH” is reachable from 
“LOG”

● “RUN” is reachable from 
“START”

● …

Intuition: patching only some well-chosen actions should correct the specification.
13



Trace          no longer exists!

Solving approach: Computation of Patches – Impact
In this work, we differentiate two types of patches: patches that impact correct traces of the 
specification, and patches that do not.

A patch is said to impact correct traces of the specification if after applying this patch to the 
specification, some of its correct traces no longer exist.

INEVITABLE(“LOG”) {START}

14



Solving approach: Computation of Patches – Optimality

In both cases, we want to compute the optimal patches.

In this work, the notion of optimality is defined by the size of the patches returned and the 
impact of these patches on correct traces of the specification.

The size of a patch corresponds to the number of actions that it contains, and the impact of a 
patch corresponds to the number of actions belonging to correct traces impacted by the patch.

The smaller the patch the more optimised it is, and the smaller its impact the more optimised it is.

15



Solving approach: Computation of Patches – First Step

In a first step of the computation, we check whether the patches will necessarily impact some 
correct traces of the specification or not.
In order to avoid impacting correct traces, at least one of the two following conditions must hold:

Condition 1: If all the first incorrect transitions are exclusively incorrect, we can patch the 
specification without impact on correct traces. 

Condition 2: If all the incorrect transitions are reachable from exclusively incorrect transitions, 
we can patch the specification without impact on correct traces.

16



Solving approach: Computation of Patches – First Step (Example)

AIT = {EXEC1, EXEC2, RUN}

FIT = {EXEC2, DONE}

EIT = {EXEC2, DONE}
=

AIT = {FINISH, RUN}

FIT = {FINISH, RUN}

EIT = {}

INEVITABLE(“LOG”) INEVITABLE(“LOG”)

17



3

Solving approach: Computation of Patches – Second Step

First scenario: Patches have no impact on correct traces.

Optimality criterion: Size of the patches.

Intuition of the algorithm:

Compute all combinations of EIT of size 1.

For each combination, verify if the corresponding transitions can reach all 
incorrect transitions of the CLTS (i.e., they can correct the specification).

If the combination corrects the specification, add it to the list of patches.

1

2

3

4 If a patch was found in step          , stop iterating and return the patches found.
Otherwise, restart an iteration with combinations of size 2 (and so on).

18



Solving approach: Computation of Patches – Example

Patches: {{EXEC2, DONE}}

AIT = {EXEC1, EXEC2, RUN}

FIT = {EXEC2, DONE}

EIT = {EXEC2, DONE}

19



Solving approach: Computation of Patches – Second Step

First scenario: Patches have an impact on correct traces.

Optimality criterion: Impact on correct traces.

Intuition of the algorithm:

Compute all combinations of FIT of size 1.

For each combination, verify if the corresponding transitions can reach all 
incorrect transitions of the CLTS (i.e., they can correct the specification).

If the combination corrects the specification, verifies if its impact is smaller 
than or equal to the previous patches found.

1

2

3

5

4 If yes, add it to the list of patches.

Start a new iteration until having computed all combinations of FIT, 
regardless of their size.

20



Solving approach: Computation of Patches – Example

AIT = {FINISH, RUN}

FIT = {FINISH, RUN}

EIT = {}
Patches: {{RUN}, {FINISH}}

21



Plan

1. Preliminaries
1.1. Model checking

1.2. Counterexample LTS

1.3. Single Inevitable Execution Property

1.4. Patch

2. Solving approach
2.1. Global Representation

2.2. Transition Sets Computation

2.3. Patches Computation

3. Implementation
3.1. Performance study

4. Conclusion
22



Prototype

The approach detailed in this presentation has been fully implemented and tested on dozens of LNT 

specifications. It consists of approximately 2,000 lines of Python code.

Performance study

Implementation

Very short!
(300ms at most)

Rather long (~45m)

23



Plan

1. Preliminaries
1.1. Model checking

1.2. Counterexample LTS

1.3. Single Inevitable Execution Property

1.4. Patch

2. Solving approach
2.1. Global Representation

2.2. Transition Sets Computation

2.3. Patches Computation

3. Implementation
3.1. Performance study

4. Conclusion
24



Conclusion

In this work, we proposed a way for automatically finding and correcting bugs related to 

single inevitable execution properties in labelled transitions systems.

We also provided an automated tool implementing the proposed solution, for which we 

assessed the scalability through a performance study.

Short-term improvements:

❖ Manage non-fixed action names (such as “!” or “?” in LNT).

❖ Try to reduce the complexity of the algorithm (avoid computing all combinations)

Mid-term improvements:

❖ Extend the approach to (at least) nested inevitable properties.

25



Questions

26



Solving approach: Computation of Patches – Main Algo

In a first step of the computation, we check whether the patches will necessarily impact some 
correct traces of the specification or not.

C1 C2

C1: If all the first incorrect transitions are 
exclusively incorrect, we can patch the 
specification without impact on correct 
traces 

C2: If all the incorrect transitions are 
reachable from exclusively incorrect 
transitions, we can patch the specification 
without impact on correct traces 

27



Solving approach: Computation of Patches – Second Step

First scenario: Patches have no impact on correct traces
Optimality criterion: Size of the patches

find all combinations of size PS of EIT

for each combination, verifies if it 
corrects the specification

iterate until finding a patch

if yes, add the combination to the list of 
patches and prevent the next iteration

28



Solving approach: Computation of Patches – Impact

Second scenario: Patches have impact on correct traces
Optimality criterion: Impact on correct traces

find all combinations of size PS of FIT

iterate over all possible combinations

for each combination, verifies if it 
corrects the specification

if yes, verifies if it has at most the same 
impact than previous patches found

29


