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Abstract

Modelling and designing business processes have become crucial activities for companies in
the last decades. Consequently, multiple workflow modelling notations emerged. Among
them, the Business Process Modelling Notation (BPMN) is now considered as the de facto
standard for process modelling. The BPMN notation requires a certain level of expertise
to allow one to write correct and well-structured processes compliant with some expected
requirements. The BPMN modelling phase can thus become tedious, and even error-prone
if carried out by non-experts. The first part of this thesis consists in providing a solution to
help users modelling BPMN processes. To achieve this goal, the proposed approach takes
as input the requirements of the user in a textual format, in which the tasks and their
ordering constraints are informally described. It then makes use of Large Language Models
(LLMs) to translate these constraints into a machine-readable format. From this internal
format, the approach generates and returns a BPMN process satisfying these constraints.
As a side contribution, this thesis also presents techniques to verify that a process does
not deviate from its expected behaviour. Such verifications are usually performed using
classical model checking techniques. However, we thought that a user not familiar with
the BPMN notation would struggle using such techniques, and more precisely, writing the
expected behaviour of the process in the form of temporal logic properties. Thus, the core
of this side contribution consists in facilitating the writing of such properties by allowing
the user to generate them directly from their textual description.

Recent studies suggested that, once built, business processes are subject to changes
throughout their lifetime. In companies, such changes may often lead to non-optimal
processes, responsible of issues such as the increase of the execution time, or of the costs
related to them. To be able to optimise processes, there is a need to have at hand an
explicit model of their behavior and quantitative features. Thus, beside the processes
themselves, usually modelled using workflow-based notations, one must provide, among
others, an explicit description of the durations and the resources required by the tasks
composing these processes. The second part of this thesis consists in providing a solution
based on refactoring techniques, whose goal is to change the structure of the process in or-
der to optimise one or several criteria of interest, such as process execution time, resource
usage, or total costs. To do so, the proposed approaches consist of various ingredients.
For instance, we propose refactoring patterns, useful for moving the tasks of the process
from one place to another while partially preserving its semantics. We also make use of
simulation techniques to compute metrics of interest from the execution of (one or several
instances of) the process. Similarly, we utilise several exploration algorithms in order to
navigate through the space of solutions. In the end, the multiple presented approaches all
return an optimised version of the original process given as input.



Résumé

Durant les derniéres décennies, la modélisation et la conception de processus métier sont
devenues des activités cruciales pour de nombreuses sociétés. En conséquence, de multiples
notations permettant de modéliser ces processus ont émergé, majoritairement basées sur
les flux de travaux. Parmi elles, la méthode appelée notation et modéle de processus métier
(Business Process Model and Notation (BPMN), en anglais) est aujourd’hui considérée
comme le standard pour la modélisation de processus. La notation BPMN requiert un
certain niveau d’expertise pour permettre a ses utilisateurs d’écrire des processus corrects,
bien structurés, et conformes aux exigences. La phase de modélisation peut donc devenir
fastidieuse, et méme sujette a erreurs si elle n’est pas effectuée par des experts de la no-
tation. La premiere partie de cette thése consiste a fournir une solution visant a aider les
utilisateurs a modéliser des processus BPMN. Pour ce faire, 'approche proposée prend en
entrée les exigences de 1'utilisateur écrites dans un format textuel, dans lesquelles les taches
et les contraintes les ordonnant sont décrites informellement. Ensuite, I'approche utilise
des grands modéles de langage (Large Language Models (LLMs), en anglais) pour traduire
ces contraintes dans un format compréhensible par une machine. A partir de ce format
interne, 'approche génére et retourne un processus BPMN satisfaisant les contraintes de
départ. Cette these présente également, comme contribution secondaire, des techniques
permettant de vérifier qu'un processus ne dévie pas de son comportement attendu. De
telles vérifications sont généralement effectuées grace a des techniques classiques de véri-
fication de modele. Or, nous avons pensé qu’un utilisateur n’étant pas familier avec la
notation BPMN pourrait rencontrer des difficultés dans 1'utilisation de telles techniques,
et plus particulierement, dans I’écriture des propriétés de logique temporelle décrivant le
comportement attendu. Ainsi, le coeur de cette contribution secondaire consiste a faciliter
I’écriture de telles propriétés en permettant a l'utilisateur de les générer directement a
partir de leur description textuelle.

De récentes études suggerent que, une fois congus, les processus métiers évoluent, et ce
tout au long de leur cycle de vie. Dans les sociétés, de tels changements peuvent parfois
amener a des processus non-optimaux, responsables de problemes tels que ’augmentation
du temps d’exécution ou des colits qui leur sont liés. Afin d’optimiser ces processus, il est
nécessaire d’avoir a portée de main un modele décrivant explicitement leur comportement,
ainsi que les aspects quantitatifs qui y sont liés. Ainsi, au-dela des processus eux-mémes,
généralement modélisés dans une notation basée sur les flux de travaux, il est nécessaire
de fournir, entre autres, une description explicite des durées et des ressources requises par
les taches composant ces processus. La seconde partie de cette these consiste a fournir une
solution basée sur des techniques de refactorisation, dont le but est de changer la struc-
ture du processus afin d’optimiser un ou plusieurs criteres, tels que le temps d’exécution,
I'utilisation des ressources, ou les cotits totaux. Pour ce faire, les approches proposées sont
composées de plusieurs ingrédients. Par exemple, nous présentons des patrons de refac-
torisation, utiles pour déplacer les taches du processus d'un endroit a un autre tout en
préservant partiellement sa sémantique. Nous utilisons également des techniques de simu-



lation pour calculer des métriques, basées sur ’exécution d’'une ou plusieurs instances du
processus. De méme, nous détaillons plusieurs algorithmes d’exploration ayant pour objec-
tif de naviguer a travers ’espace de solutions. Au final, les multiples approches présentées
retournent toutes une version optimisée du processus donné en entrée.
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Chapter 1

Introduction

1.1 Context

According to history, the very first representation of a business process was proposed by the
economist Adam Smith in 1776, who described the execution flow of a pin factory [Smi76].
He also introduced the notion of labour division, which consists in dividing a production
process into several small tasks, each of which will be performed by a specialised worker.
These two notions sealed the basis of business processes as they are known nowadays. In
the 20th century, Frederick Winslow Taylor’s ideas were seen has a revolution in the field,
as he proposed a standardisation of the processes, and a clear definition of the roles involved
in the business processes [Tayll]. Later in that century, several people tried to provide
a global definition of business processes [RB90, Dav93, HC93, JMP93|, each focusing on
different aspects of the process, with more or less details. This desire to provide a rigorous,
unified definition of business processes paved the way to the creation of a new discipline:
the business process management.

Business Process Management (BPM) [JN06, Wes07, Panl2| is a holistic discipline en-
compassing all the fields related to business processes, such as business process discovery,
modelling, analysis, measurement, improvement, optimisation or automation [RvSK14].
Since its apparition and its democratisation, it has become widely used in compa-
nies [MRO08, Neu09], independently of their domains of application. The term business
process modelling was coined in the 1960s by Stanley Williams [CW71] with the idea of
representing business processes as physical control systems in order to better understand
them. However, modelling business processes has been a topic of interest since the early
1900’s, with the apparition of several modelling notations such as flowcharts [GG21], func-
tional flow block diagrams (FFBDs), control-flow diagrams (CFDs), Gantt charts [Gan10],
PERT diagrams [MRCF59], or IDEF [ide98]. More recently, other notations emerged,
such as the Unified Modelling Language (UML) [BJR17] and the Business Process Man-
agement Notation (BPMN) [OMG11]. Due to their completeness and understandability,
both notations rapidly became widely used worldwide standards. Moreover, further re-
search suggested that BPMN could be more suitable than UML for modelling business pro-
cesses [Whi04, NK06, Wes07], although it was refuted by following studies [BKO10, Geal2].
However, the seed was planted, and many companies started making use of this notation
to model their business processes’.

https://camunda.com/blog/2024/07 /how-13-businesses-feel-about-bpmn/
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The BPMN notation allows one to depict precisely a business process. However, it does
not inherently provide support for quantitative aspects of processes, such as resources or
durations. To bypass this limitation, several extensions of the notation emerged in the
literature, aiming at providing support for, among others, resources [Gro07, AGMWO08,
SCV11, BDGP16] and time [GT09, WG09, AERDM16|. Such extensions of the language
eventually led to the apparition of techniques aiming at performing quantitative analyses
of the processes [OLRR12, HS12, DRS18b|. Companies saw in this enrichment of the
notation a novel opportunity for improving their business processes, by optimising them
with regards to multiple quantitative criteria. Indeed, optimising business processes is a
strategic activity in organisations because of its potential to increase profit margins and
reduce operational costs.

Similarly, BPMN does not natively provide tools for verifying the syntactic and/or seman-
tic correctness of the processes. However, assessing and asserting the validity of BPMN
processes is essential to ensure that they do not deviate from their expected behaviour.
To palliate these flaws, several approaches were proposed to verify whether a BPMN pro-
cess is syntactically correct regarding the standard [RH07, SM07, CMP*20, BGT20], or
semantically correct with regards to some expected behaviour [DDO08, KPS17, BGT20].

1.2 Motivations

With almost six millions matching results on Google Scholar, business process management
has been (and is still!) a hot topic in the field of computer science. Moreover, studies showed
that, in spite of the raise of graphical modelling tools, modelling business processes has
always been a tedious [GV06, KO10] and error-prone [ML04, LF14, RSBR14, Gro22] task.
On the one hand, it usually requires a deep understanding of the company’s needs, and
of its intrinsic way of functioning. On the other hand, it necessitates strong competences
in modelling, and in particular, in the context of this thesis, an advanced knowledge of
the BPMN notation. Indeed, the BPMN modelling tools allow a lot of freedom in the
design of the processes, and usually do not provide integrated solutions for asserting their
correctness. Thus, despite following some modelling best practices [MWO08, SFS11], a
novice user can quite easily design a syntactically and/or semantically incorrect process.
Moreover, complex structures—such as unbalanced gateways, or nested loops—may be
challenging to handle for inexperienced users.

Consequently, the interest in finding solutions to automatically generate business processes
has been growing uninterruptedly [dABTS"18]. Between the early 2000s and the late
2010s, most solutions to this problem were making use of Natural Language Processing
(NLP) [Turb0] to extract information from a textual representation of the process, and
use it to generate the corresponding (graphical) BPMN process [FMP11, HKW18]. A few
others [ISP20, FSZ21] decided to tackle the problem from another angle, considering that
business processes could be written in an intermediate, simpler—yet machine readable and
understandable—format. However, in both cases, the user often has to give a nudge to
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solve some misunderstood requirements, or to obtain/generate the required input format.
Some others also gave a try to different input formats, such as a hand-drawn representation
of the process [SvdALS23|, but this requires the user to have knowledge of the notation.
Consequently, none of the aforementioned approaches can be considered interaction-free,
in the sense that they all require, at some point, human intervention to complete. It is also
worth mentioning process mining [vdA16], which consists in analysing event data and/or
logs to infer information about a given system. Such techniques were applied successfully
to the BPMN modelling problem [CDGBR16, KBAL"18]. However, they require logs as
input, that are, detailed, structured information of the process-to-be.

In 2018, the OpenAl company introduced GPT-1 [RNSS18], the first Generative Pre-
Trained Transformer. Four years later, they introduced the ChatGPT website?, which has
been a major breakthrough in the field of artificial intelligence [GtH23, Sza23, SMA24] and
a fundamental change in people’s everyday life [FS23, Shi24, WM24, AHCN24]. GPT (and
more generally, large language models [ZZL725)) lifted numerous barriers in the field of nat-
ural language processing due to its capabilities to understand raw textual formats [SWN25].
In addition to that, it also showed strong skills in text generation [BOQ™25].

This fast emergence led to several research questions, the most recurrent one concerning
the reliability of GPT’s answers [WCP*23, Chu24, ZLC"24]. Further research showed two
main flaws in the current existing Al models: they can not reason [Ark23], and they do not
know when they are wrong [SMK23]. Aware of these limitations, and oppositely to most of
the recent business process generation approaches [KBSvdA24b, EAAT24], we decided to
use LLMs as little as possible, and only for tasks that we were not able to complete with
classical algorithms. This design decision allowed us to better comprehend what the LLM
was doing wrong, in case of errors from its side, and also how the error was correlated
to the given input. Moreover, the utilisation of classical algorithms for a large part of
the process generation allowed us to preserve control on the different steps composing this
transformation, and to provide strong semantics guarantees to the generated model.

Despite corresponding to the original needs of the companies, several studies suggested
that, in practice, business processes were not built once and for all in a monolithic way,
but had their own lifecycle consisting of several successive phases, which, if needed, could
be repeated [GT98, MKPC14, RHB15|. During the lifetime of a business process, several
reasons can motivate the modification of its structure: the addition/deletion of a specific
task, the adjustment of the process to consider a new regulation or internal directives, the
improvement of the process with respect to one or several quantitative criteria (such as
overall execution time or total cost), etc. When designing a process, or when updating it,
the quality and the correctness of the process must be preserved. However, this may not
be the case if this rewriting/reengineering of the process is achieved manually.

Further research showed that modifying the structure of a process in order to optimise
it may be challenging when some quantitative aspects are taken into account. For in-

’https://chatgpt.com/
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stance, the structure of the optimised version of a business process may differ depending
on whether the desired optimisation targets the usage of certain resources, the cost of the
process, or its execution time. Moreover, applying these modifications manually is nearly
impossible due to the complexity of this enriched model. Therefore, there is a need for au-
tomated techniques aiming at optimising a business process throughout its lifetime. These
research questions opened up the door to multiple proposals, targeting different aspects of
optimisation.

Resource optimisation [DRS19, DRS21, FSZ24] is a technique allowing, among others, to
reduce the execution time of a business process by modifying the number of replicas of
each resource available to the process. This approach does not change the structure of the
process, but may be difficult to apply in practice, as it usually requires some flexibility in the
budget of the companies. Indeed, changing the number of available resources may require
the acquisition of new machines, or the hiring of new employees. On the other hand,
approaches such as [GT09] give insights on how scheduling could be used to optimise
business processes. Such approaches do not require any change in the structure of the
process, nor any budget flexibility. However, they are inherently unsuitable for poorly
designed processes, whose structure contain flaws or potential of optimisation. To palliate
these drawbacks, several authors [RM05, KI.22, DS22| proposed a technique called process
refactoring, which consists in modifying the structure of a process in order to optimise
its execution time. However, in their current form, these approaches only consider a
single replica of the resources, a single execution of the considered process, and a single
optimisation criterion: the execution time of the process.

1.3 Approach

The approach proposed in this thesis first aims at helping BPMN designers during the mod-
elling phase by providing them a simple and efficient way of generating syntactically and
semantically correct BPMN processes. The simplest (and most adopted) way of represent-
ing a business process for non-expert users is to describe its behaviour textually, in natural
language. This format was consequently chosen as input format in our proposal. However,
natural language is well-known for its inherent complexity [Lin96] and ambiguity [Jac20].
For this reason, we rely on natural language processing techniques, and, more precisely,
on LLMs, to analyse and extract the essential information contained in the description of
the process, and transform it into a machine-readable format. Several successive steps are
then applied to this output in order to generate the corresponding BPMN process. For the
sake of efficiency and correctness, we chose to prompt the LLM once and only once. On
the one hand, this unique prompt shortens the execution time of the approach. On the
other hand, it reduces the sensitivity and the variability of the result to this single step,
while all the remaining ones can ensure strong semantical guarantees.

The LLM prompt contains several information regarding the task that it should perform,
the format of its answer, some examples of user prompts and expected answers, and the
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description of the process. The answer returned by the LLM is designed to contain the
essence of the useful information hidden in the description, that is, the tasks that should
compose the process, along with their relationships. This answer is then transmitted to a
pipeline consisting of several steps, with the goal of extracting and manipulating all the
information that it contains in order to produce a relevant BPMN process. Each of these
steps has a specific goal aiming at enriching a previous version of the process with new
information. On the one hand, this solution is useful for non-expert users since it provides
a way to specify BPMN processes without mastering the intricacies of the notation. On
the other hand, it is also helpful for expert users, because it simplifies and fastens the
modelling phase by automatically generating BPMN processes, thus avoiding the burden
of graphically writing the entire workflow step by step. Finally, the generated process
has the main benefit of being semantically correct with regards to the LLM’s answer, and
syntactically correct by construction.

Despite being correct with regards to the LLM’s answer, the generated process may not
perfectly reflect the behaviour of the original description given by the user. This may
be due to the inherent ambiguity of natural language, but also to an incomprehension
or a misunderstanding of the LLM. Thus, there is a need to verify that the generated
process’ behaviour corresponds to the expectations of the user. Several techniques aiming
at assessing the behaviour of a BPMN process already exist in the literature [DDOO0S,
KPS17, BGT20]. However, they usually require knowledge about behavioral specification
languages, such as temporal logics [Pnu77, CE82, EH83, MT08], which is, in our opinion,
rather unlikely for users not familiar with BPMN. To palliate this, and similarly to the
works proposed in [FC23, CHM123], we proposed an LLM-based technique relying on
patterns [DAC99] to translate behavioural properties written in natural language into their
corresponding representation in temporal logic. Given this temporal logic property, the
behaviour of the BPMN process can be verified, with the help of classical model checking
techniques [BKO0S].

We stated earlier that, once built, business processes were subject to variations due to,
for instance, changes in the company’s needs, or desires of optimisation. According to the
literature, the field of business process optimisation lacked of solutions aiming at efficiently
improving a process, without inducing additional costs. To tackle this research problem,
we proposed to extend an approach called process refactoring [DS22], which consists in
changing the structure of a business process in order to optimise it, with regards to one or
multiple criteria. Several possibilities were explored, and can roughly be separated in two
blocks. The first one consists in statically analysing the input process, and, guided by the
results of this analysis, modify its structure in a one-shot manner. Once generated, this
new process is evaluated to assess its quality, and may be subject to slight restructuring if
needed. The second one was thought oppositely, and consists in making progressive small
changes to the structure of the process, by repeatedly moving one of its tasks to another
position. In order to analyse the quality of a given process, metrics related to the desired
optimisation criteria are computed, with the help of simulation techniques. Unlike the
first refactoring approach, the second may generate an important quantity of processes
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at each step, which requires techniques for seeking the best solutions among the set of
candidates. Finally, it is worth noting that moving tasks in a BPMN process may not
preserve the semantics of the original process, if not performed carefully. For this reason,
we rely on well-defined refactoring patterns that ensure the preservation of the original
trace semantics of the process, modulo some permutations.

1.4 Contributions

The two main contributions of this thesis correspond to the two research approaches pre-
sented respectively in Chapters 3 & 4 of this manuscript, focusing on the generation of
BPMN processes from their natural language descriptions, and on the optimisation of such
processes via refactoring. Another minor contribution of this thesis resides in the gener-
ation of temporal logic properties from their natural language descriptions, with the goal
of verifying such properties on BPMN processes with the help of model checking. This
contribution is detailed in Section 5.2, as it was mostly thought as a tool, called GIVUP,
itself presented in this section. It is also worth mentioning that each contribution presented
in this thesis is accompanied by its own fully functional toolchain that was used to test
and evaluate the approach that it implements. More details about these tools are given in
Chapter 5 of this manuscript. Overall, the contributions of this thesis can be summarised
as follows:

— An LLM-based approach aiming at extracting the essential information from a textual
description of a process, later used to generate automatically a BPMN representation
of that process. This process is syntactically correct by construction, and semantically
correct with regards to the information returned by the LLM;

— Three approaches for optimising BPMN processes through refactoring, each miti-
gating some of the shortcomings of the others. All of them make use of a set of
refactoring patterns, guiding the refactoring operation through the generation of an
optimised version of the process while ensuring the preservation of several semantic
properties;

— An approach aiming at generating temporal logic properties from their textual de-
scription, based on patterns, in order to provide facilities for the verification of BPMN
processes;

— Four tools (one for the modelling and three for the refactoring), consisting of roughly
45k lines of Java code, which were used to embed, test, and evaluate the quality of
the four aforementioned approaches.
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1.5 Publications

These three years of work led to several publications in renowned international conferences.
These publications are listed below?.

Incremental Synchronization of BPMN Models and Documentations by
Leveraging Structural Algorithms and LLMs [CDNS25]*. David Cremer, Ben-
jamin Dalmas, Quentin Nivon, Gwen Salaiin. Proceedings of the 31st International
Conference on Cooperative Information Systems (CooplS’25), October 2025, Mar-
bella, Spain.

GIVUP: Automated Generation and Verification of Textual Process De-
scriptions. Quentin Nivon, Gwen Salaiin, Frédéric Lang. Proceedings of the 33rd

International Conference on Foundations of Software Engineering (FSE’25), June
2025, Trondheim, Norway.

Automated Generation of BPMN Processes from Textual Requirements.
Quentin Nivon, Gwen Salaiin. Proceedings of the 22nd International Conference on
Service-Oriented Computing (ICSOC’2/), December 2024, Tunis, Tunisia.

Semi-Automated Refactoring of BPMN Processes. Quentin Nivon, Gwen
Salatin. Proceedings of the 2/th International Conference on Software Quality, Reli-
ability and Security (QRS’24), July 2024, Cambridge, England.

Automated Repair of Violated Eventually Properties in Concurrent Pro-
grams [FNS24]*. Irman Faqrizal, Quentin Nivon, Gwen Salaiin. Proceedings of
the 12th International Conference on Formal Methods in Software Engineering (For-
maliSE’24), April 2024, Lisbon, Portugal.

Refactoring of Multi-Instance BPMN Processes with Time and Resources.
Quentin Nivon, Gwen Salatin. Proceedings of the 21st International Conference on
Software Engineering and Formal Methods (SEFM’23), November 2023, Eindhoven,
The Netherlands.

1.6 Thesis Structure

The rest of this thesis is organised as follows:

Chapter 2 presents all the background notions and definitions required to understand the
rest of this work, with a focus on classical mathematical notations, details on graphs and
trees, an in-depth presentation of the BPMN notation, and a high level presentation of
model checking.

3the asterisk symbol

“*? next to the name of a paper indicates that the cited work is not presented in

this manuscript, because of its deviation from the original topic of this PhD.
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Chapter 3 presents our approach aiming at generating a BPMN process from a natural
language description of its behaviour. In particular, it provides a fine-grained focus on the
different steps applied to transform the textual description into the corresponding process.

Chapter 4 details our three approaches aiming at optimising a BPMN process by applying
refactoring techniques to it. It starts by introducing the shared concepts of all the ap-
proaches, and then details the semantic preservation that they ensure, before presenting
and comparing/discussing them.

Chapter 5 introduces the tool support we developed around each of the presented ap-
proaches, along with the experiments we conducted to evaluate them. It also introduces
our GIVUP tool, providing further information on all its building blocks.

Chapter 6 provides an overview of the related work adjacent to those presented in this
thesis. More precisely, it focuses on other modelling approaches for BPMN and temporal
logics, and on other works dealing with refactoring.

Chapter 7 concludes this thesis and discusses the future work.



Chapter 2

Preliminaries

“We are like dwarfs sitting on the
shoulders of giants. We see more, and
things that are more distant, than they
did, not because our sight is superior
or because we are taller than they, but
because they raise us up, and by their
great stature add to ours.”

John of Salisbury

“If I have seen further, it is by sitting
on the shoulders of giants.”

Isaac Newton
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This chapter introduces several preliminary notions that will be used throughout this thesis.

2.1 Mathematical Notations

The first preliminary notions that we introduce are those considered as mathematical no-
tations. In particular, we first define several logical operators that will be used throughout

this thesis.
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Definition 2.1 (Logical Operators). Let:

— T be the proposition true;

— L be the proposition false;

— PV @Q be the disjunction of propositions P and @Q);

— P A\ Q be the conjunction of propositions P and @);

— P = Q be the logical implication, i.e., (-P)V Q;

— P < Q be the logical equivalence, i.e., (P = Q) A (Q = P);
— @ | M be the satisfaction of a property ¢ by a model M.

Then, we introduce some notions regarding the tuples.
Definition 2.2 (Tuples). Let:

— (21, ..., z,) be the tuple of size n (also called n-tuple), consisting of the elements x;
to T,

— UlJi] be the i'h element! of the n-tuple U;

— index(x;) be the index operator, which returns the index of the first occurrence of
element x; in the tuple (x1,...,x,), that is

e » if i € )ty in
index(z;) = LR ‘(371 n)
1 otherwise
— Uls :e] = (U[s],...,Ule]) be the slice operator, which returns a vector containing all

the elements of the n-tuple U whose indices belong to [s...e].
Let us now present some notations about sets.
Definition 2.3 (Sets). Let:
— () be the empty set;

— N be the set of natural numbers;

— R be the set of real numbers;

— {x1,...,x,} be the smallest set containing each element 1 to p2;

— E C E’ be the predicate E is a subset of E’, i.e., Vx € E, © € E';

— E C E' be the predicate E is a strict subset of E’, i.e., (F # E') AN (E C E');
— E N E' be the intersection of the sets E and E’, i.e., {r € E | x € E'};

— E'UFE' be the union of the sets E and E’, i.e., {r € E V x € E'};

— E'\ E' be the difference of the sets E and E’, i.e., {vr € E | x ¢ E'};

— |E| be the cardinal number of the set E;

n particular, we have: Vi € [1..n], (@1,...,2,)[i] = ;.
2Hence, multiple occurrences of an element are allowed, but ignored, i.e., {z,2} = {z}
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— 2F be the power set of E, i.e., {X C E};

— 2F be the power set of size n of E, i.e., {X € 28 | | X| =n};

— 2B be the power set of size greater or equal to n of E, i.e., {X € 2F | | X| > n};
— 2B be the power set of size lower or equal to n of E, i.e., {X € 2F | | X| < n};

— any(E,n) £ (e, ...,en) be a function returning a n-tuple containing elements of E

chosen non-deterministically?;
— any(F) be a shorthand for any(F, 1)[0];

— any,(F,n) < (e1,...,en) be a function returning a n-tuple containing elements of E
chosen probabilistically?;

— any,(F) = be a shorthand for any,(F,1)[0];
— G(F) be a function returning the set of all permutations of elements of E;
— ExE = {(z,y) | (v € E)A(y € E')} be the cartesian product of sets E and E'.

Finally, we present some classical mathematical functions and probability distributions.
Definition 2.4 (Functions). Let:

— x> |z] be the floor function;
— x> [z] be the ceil function;
— O filx) = (fno fac10...0 fao fi)(x) be the composition of functions fi,..., fn

i€[l..n]
applied to x.

Definition 2.5 (Probability Distributions). Let:

— N{(p, o) be the normal distribution of mean p € R and standard-deviation o € RY;
— U,y be the (constant) uniform distribution of parameters (a,b) € R?, with a < b.

2.2 Graph

An important part of the research presented in this thesis relies on graph structures, and
more precisely on directed (vertex-)labelled graphs.

Definition 2.6 (Directed (Vertex-)Labelled Graph). A directed (vertex-)labelled graph G
is a 3-tuple G = (V, E, %), where:

— V is a set of vertices;
— E CV xV isa set of (directed) edges, whose elements are written e = (v,v') or, for
understandability, e = v — V';

3Note that (e1, ..., ;) may contain repeated elements, i.e., V(i,j) € [L..n]?, i # j # €; # €;.
4Note that this operator supposes that every element e of E has a well-defined probability of appearance.
Otherwise, it behaves as the any(FE, n) operator.
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— X is a set of labels, each of them corresponding to a verter v € V', accessible using
the operator o : V — 3.

A simplification considered in this work is that each vertex v of a directed (vertex-)labelled
graph G = (V, E, X) is uniquely labelled, i.e., Yv;,,v; € V, v; # v; = o(v;) # o(v;). As
this thesis solely deals with directed (vertex-)labelled graphs, they will be referred to as
graphs in the rest of this manuscript.

When dealing with graphs, it is common to reason on sequences of connected ver-
tices [BW10]. Depending of the form of the sequence, it is either called a walk, a trail, or
a path of the graph.

Definition 2.7 ((Directed) Walk). Let G = (V, E, X) be a graph. A (directed) walk
of G is a (possibly infinite) list wg = (v1, V2, ..., Vp, ...) € V such that Vi € N | v;11 € wg,
v; = viy1 € E. The set of all (directed) walks of G is noted We.

Definition 2.8 ((Directed) Trail). Let G = (V, E, X) be a graph. A (directed) trail of
G is a walk wg € Weg in which all edges are distinct. The set of all (directed) trails of G
18 noted T¢.

Remark 2.1. As all the edges of a trail must be distinct, a trail is necessarily finite.

Definition 2.9 ((Directed) Path). Let G = (V, E, X) be a graph. A (directed) path of
G is a trail t¢ € Tg in which all vertices are distinct. The set of all (directed) paths of G
18 noted Pgq.

Remark 2.2. As a path is a trail, a path is necessarily finite.

Despite being differentiated in the literature, these three notions are often mixed and
confusingly used in place of each others. Thus, even though this thesis only deals with
walks, the term path will be abusively employed in the rest of this manuscript to design a
walk, without any assumption on the distinguishability of the edges or the vertices. We also
introduce the operator Pg(v) which returns the set of all paths of a graph G = (V, E, X)
starting with the vertex v € V. Finally, for simplicity reasons in the following definitions,
a path will always be defined as a n-tuple, regardless of its potential infinity.

When a path contains multiple occurrences of the same vertex, it is said to be cyclic.
Otherwise, it is said to be acyclic.

Definition 2.10 (Cyclic & Acyclic Path). Let G = (V, E, %) be a graph, and let Pg
be its set of paths. For all p = (vy,...,v,) € Pq, p is said to be cyclic, noted pey, if there
exist 1,5 € [1..n],7 # j, such that v; = v;, and acyclic, noted Py otherwise.

Similarly, a graph is cyclic when it contains at least one cyclic path, and acyclic otherwise.

Remark 2.3. A cyclic graph G = (V, E, X) necessarily contains infinite paths, that are,
{p € Pc | |pl = oo}
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In graph theory, it is often useful to know the distance separating two vertices. In non-
weighted graphs, it can be defined as the minimal number of nodes separating these two
vertices.

Definition 2.11 (Vertices Distance). Let G = (V, E, ¥) be a graph. The distance
between two vertices v, v’ € V' is defined as

|(v,2")]| £ min (index(v') — index(v))
pE€Pa
v,0' Ep

Remark 2.4. [t is worth noting that, in a directed graph G = (V, E, X)), the distance
between two vertices v,v" € V is usually not commutative, i.e., ||(v,v")| # |[(v',v)]l.

Since a path p represents an ordering of the vertices of the graph, if a vertex appears after
another vertex inside p, then the latter is said to be reachable from the former.

Definition 2.12 (Vertex Reachability). Let G = (V, E, X) be a graph, and Pg be its
corresponding set of paths. A wvertex v’ € V is said to be reachable from another vertex
v € V if and only if there ezists p € Pg(v) such that v' € p. This relationship is written
v—=*.

Another useful notion in graph theory concerns the connectivity of the vertices.

Definition 2.13 (Connected Graph). Let G = (V, E, X) be a graph. G is said to be
connected if and only if for all v,v" € V, there exists p € Pg such thatv €p N V' € p.

Based on this notion, every graph can be divided into one or several components represent-
ing each a connected subgraph of the original graph that is not part of any larger connected
subgraph.

Definition 2.14 (Component). Let G = (V, E, X) be a graph. A component of G is a
subgraph Gg = (Vs, Eg,3s) C G such that:

— (g s connected;
— There does not ezist G = (Vi CV, Ey C E, ¥ C %) such that (Vs C Vi V Eg C
ES) N G is connected.

When a component ensures a reachability property between each of its vertices, it is said
to be strongly connected.

Definition 2.15 (Strongly Connected Component). Let G = (V, E, X) be a graph.
A strongly connected component of G is a component Gg = (Vs, Es,%s) of G such that
Vg, vg € Vg, vg —* v5.

To conclude, let us define several useful graph operators that will be used in the rest of this
thesis.

Definition 2.16 (Graph Operators). Let G = (V, E, %) be a graph.
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— G ooy = (VI ENLST) where

— Vi={v,.,0,} CV
— E'={v—>veE|vveVl}
— Y ={leX | eVlst ol =1}

is the restriction of G to the subset {v1,...,v,} of its vertices;
def

— Vv eV, childs(v) = {v' € V | v = v € E} is the children operator, which returns
the set of children nodes of any node v;

— Yu €V, parents(v) = {v/ € V | v/ — v € E} is the parents operator, which returns
the set of parent nodes of any node v;

— Yw eV, succ(v) £ {v' €V | v —=*v'} is the succ operator, which returns the set of
successor nodes of any node v;

— Yu eV, pred(v) E {v' € V | v —=* v} is the pred operator, which returns the set of
predecessor nodes of any node v;

— Vp € Pg,

plv. ] = {(vs, e Un) ifus €D

P otherwise’

P otherwise’

{(vl, Vo) ifve €Ep

plvs 1 ve] = plus :][: ve]

is the slice operator applied to paths, in its three possible forms.

2.3 Tree

In Chapter 3, some elements are represented as more constrained graph structures, called
trees, useful for their numerous properties.

Definition 2.17 (Tree). A tree is an undirected, connected, and acyclic graph defined as
a 2-tuple T = (V,E), where:

— V is a set of vertices;
— E CV xV is a set of edges connecting the vertices, whose elements are written
/
e=v—'.

In this thesis, we focus in particular on a precise type of tree, which has the properties of
being rooted and directed in a top-bottom fashion. Such particular trees are called out-trees
or arborescences.
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Definition 2.18 (Out-Tree/Arborescence). An out-tree or arborescence is defined as a
S-tuple To = (V,E,R), where:

— V is a set of vertices;

— E CV xV is a set of directed edges connecting the vertices, whose elements are
written e = v — v';

— R €V is the root vertex, the only vertex having no incoming transition, i.e., AR € V'
such thatYv €V, fe=v - R € E.

Each wvertex of an out-tree, except the root verter, has exactly one parent vertex, i.e.,
Vo e V\{R}, 3, € V such that v, - v € E.

By definition, cutting an arborescence at a certain height results in a (smaller) arborescence,
called sub-arborescence.

Definition 2.19 (Sub-Arborescence). Let Top = (V, E, R) be an arborescence. For all
v eV, the 3-tuple (V', E',v) where

— V' E{v, 0 €V | v = vy € E'};
— ¥ {vy = vy € E| =(vy =" v)};

is also an arborescence, called sub-arborescence of Tp.

In their generic form, arborescences do not provide any ordering of their vertices. However,
in some cases, and in particular in this work, it may be of interest to order the vertices
with regards to the others.

Definition 2.20 (Ordered Arborescence). A (totally) ordered arborescence is an arbores-
cence To = (V, E, R) such that for allv € V, for allv',v" € childs(v), v' <v" VvV v < 0.
It is denoted Ty .

In this thesis, the ordering of the vertices of an ordered arborescence is ensured by an
identifier © € N attributed to each vertex. By convention, these values are sorted by
ascending order, i.e., V(4,j) € N x N* v; < v;4,;. Moreover, the identifiers of the children
nodes of any node v € V must be unique, i.e., {vg, v, ..., v, } € childs(v) =k #1# ... # n.
For brevity, as the approaches presented in this thesis only deal with ordered arborescences,
the notation T will be used as simplification of T5 to represent ordered arborescences.
To conclude, we define some arborescences operators useful for the rest of this thesis.

Definition 2.21 (Arborescences Operators). Let Tx = (V, E, R) be an ordered arbores-
cence. We define the following operators on T:
— Vv €V, T<(v) returns the sub-arborescence T = (V', E',v) rooted by v;

— root(T%) £ R returns the root of the arborescence;
— Yv € V\ {R}, parent(v) = v such that v/ — v € E returns the parent node of v;
— Yo € V,Vi € [0...|childs(v)| — 1], childs(v)[i] returns the i*® child of v.?

5Note that this operator is only definable because we consider ordered arborescences.
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2.4 BPMN

2.4.1 Syntax & Representation

Syntax

BPMN 2.0 (BPMN, as a shorthand, in the rest of this manuscript) was published as an
ISO/IEC standard in 2013 and is nowadays extensively used for modelling and developing
business processes. This thesis focuses on activity diagrams including the BPMN constructs
related to control-flow modelling and behavioural aspects.

Specifically, the node types event, task, and gateway, and the edge type sequence flow
are considered. Start and end events are used, respectively, to initialise and terminate
processes. While there must be a unique start event in a BPMN process, there might
be several end ones. A task represents an atomic activity that has (or can be rewritten
with) exactly one incoming and one outgoing flow. Despite not belonging to the standard
definition of BPMN, several works enriched the notation with resources [Gro07, AGMWO08,
SCV11, BDGP16] and time [GT09, WG09, AERDM16] for tasks. In this thesis, both of
these additional quantitative aspects are used, as a mean to increase the realism of the
considered processes. Thus, a task may have a duration or delay, expressed by default in
units of time (UT). It can also be defined using probabilistic distributions, in case of non-
fixed duration. Resource requirements are explicitly defined at the task level. A task can
include, as part of its specification, the resources it requires to be executed. In such a case,
it means that the task needs the specified number of replicas or instances of such resources
to be able to start. Once the resources are acquired, the task executes for the specified
duration. The acquisition of a resource is achieved in a first-come-first-served strategy. If
a task needs more resource replicas than available, it remains in a waiting state until the
release of a sufficient number of replicas of the required resources. When the execution of
the task is completed, the resources it acquired for its execution are released.

A sequence flow connects two nodes executed one after the other in a specific execution
order. Gateways are used to control the divergence and the convergence of the execution
flow. In this work, the two main kinds of gateways used in activity diagrams are considered,
namely, ezclusive and parallel gateways. Gateways with one incoming flow and multiple
outgoing flows are called splits, e.g., split parallel gateway, while gateways with one out-
going flow and multiple incoming flows are called merges, e.g., merge parallel gateway. A
parallel gateway creates concurrent executions for all its outgoing flows or synchronises
concurrent executions of all its incoming flows. An exclusive gateway chooses one out of a
set of mutually exclusive alternative incoming or outgoing flows. As only one branch of an
exclusive gateway is executed, a selection has to be done among the available branches. In
this work, this selection is based on the probability of execution of the branches, which are
represented as a real value ranging between 0 and 1. These probabilities must sum to 1,
and are either given directly by the designer of the process, inferred from execution traces
(using, for instance, process mining techniques [vdA16]), or considered as equal for each
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Sequence flow Initial event End event
Task Timed task Task with resource

. & resource R
O 0
ST Y (R

Parallel split Parallel merge Exclusive split Exclusive merge
gateway (inc. token) gateway (inc. tokens) gateway (inc. token) gateway (inc. token)

T 0.7 T
T T
T
0.3
Parallel split gateway Parallel merge Exclusive split Exclusive merge
(out. tokens) gateway (out. token) gateway (out. token) gateway (out. token)

R N

Figure 2.1: Supported Fragment of the Extended BPMN syntax

branch of the gateway otherwise. Such gateways can also be used to represent repetitive
behaviours (i.e., loops). This excerpt of the BPMN syntax, sufficient to cover more than
90% of the BPMN processes in practice [KPS19], is given in Figure 2.1. The following
notations will be used in the rest of this thesis:

— represents a task of label t;

— @ represents a start event;

— @ represents an end event;

— @S represents an exclusive split gateway;
— @M represents an exclusive merge gateway;
— @S represents a parallel split gateway;

— @M represents a parallel merge gateway.

It is worth noting that these notations are almost identical to the ones presented in Fig-
ure 2.1, with the particularity of being labelled with the first letter of their name (e.g., e
for the end event) to ease their remembering, and that gateways are differentiated both on
their type (i.e., parallel or exclusive) and their role (i.e., split ‘S’ or merge ‘M’).
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Representation

Due to its structure, it is suitable to represent a BPMN process as a graph G = (V, E, %),
where a vertex v € V' is either an initial event, an end event, a task, or a gateway (exclusive
or parallel, split or merge), and an edge e € E is a sequence flow. The set of labels ¥
corresponds to the labels (or names) of the tasks of the process. To stick to the usual
representation of BPMN processes, vertices will be named nodes while edges will be named
(sequence) flows in the rest of this manuscript. We now define several BPMN operators
which will be helpful in the rest of this thesis.

Definition 2.22 (BPMN Operators). Let G = (V, E, ) be a BPMN process.

— Forallv eV, 0(v) € {, @,@, @S,®M,®S,®M} returns the type of

the given vertex;

— Forallv € V such that 6(v) = , d(v) = d € N returns the duration d of the task
v expressed in units of time (UT);

— PYLEAp = (vy,...,0,) € Pg | O(v1) = @ A O(vy,) = @} is the set of paths of G
starting from an initial event and ending with an end event;

— For all p € PY, tasks(p) = {v € p | O(v) = } returns the set of tasks of the
given path.

A BPMN process is said to be balanced when each of its split gateways (independently of
its type) has a 1-to-1 mapping with a merge gateway of the same type. This implies that
each branch initiated with a split gateway is explicitly synchronised at a single convergence
point. Such balancing decomposes the process in tasks and blocks consisting of (balanced)
parallel structures, (balanced) choice structures, and (balanced) loops. Balanced parallel
(resp. choice) structures typically start with a parallel (resp. exclusive) split gateway
followed by several branches, and terminate with a parallel merge (resp. exclusive) gateway.
Balanced loop structures are usually composed of two parts: the body—which corresponds
to the part of the loop that is necessarily executed—starts with an exclusive merge gateway
and terminates with an exclusive split gateway, and the optional part—which corresponds
to the part of the loop that may be skipped—starts with the exclusive split gateway that
ends the body, and terminates with the exclusive merge gateway that starts the body.

However, the BPMN standard does not require processes to be balanced. Indeed, in
practice, it is rather common to find processes that are unbalanced, containing for instance
partial gateway closure, or intricated loops. The approach presented in Chapter 3 deals
with both kinds of processes, while the ones detailed in Chapter 4 are for now restricted
to balanced processes.

Ezample. Let us illustrate this notion of balancing/unbalancing on a very simple BPMN
process, shown in Figure 2.2. The top process (Figure 2.2(a)) is balanced. Indeed, each
parallel split gateway has a corresponding merge gateway, and oppositely. On the other
hand, the bottom process (Figure 2.2(b)) is unbalanced. As the reader can see, the paral-
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Get
Vaccination

Ask for Visa

(b) Example of Unbalanced BPMN process

Figure 2.2: Example of Balanced and Unbalanced BPMN Processes

lel split gateway S, is partially closed by the parallel merge gateway M, and is thus not
uniquely related to the parallel merge gateway M,. Such constructions, although being
more complex than their siblings, are particularly useful to represent partial synchronisa-
tion. For instance, here, the task Book Hotel could be independent of the task Ask for Visa.
However, in the balanced version of the process, it can not be performed before it. Here,
as seen in the second figure, the unbalancing allows this behaviour, as task Book Hotel now
only depends on the completion of task Get Vaccination to be executed.

Minimisation

Depending on its structure, a BPMN process may not be minimal. This notion of minimal-
ity is strongly correlated to the fact that several syntactically different BPMN processes
may depict exactly the same behaviour, i.e., be semantically equivalent according to strong
bisimulation [Par81]. Among them, the minimal one is the one containing the fewest num-
ber of nodes, or, in case of equality, the fewer number of edges.

Definition 2.23 (Minimal BPMN Process). Let {G; = (Vi, E1,%41), ..., G = (Vi En, E0) }
be a set of semantically equivalent yet syntactically different BPMN processes. The
minimal BPMN process of this set is the graph G = (Vinin, Emin, Smin) Such that

This minimal BPMN process can be obtained by applying repeatedly a set of minimisation
rules, until reaching a fixed point.
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Definition 2.24 (Minimisation Rules). Let G = (V, E, ) be a BPMN process. G can
be minimised by applying a set of minimisation rules on its gateways. This minimisation
operation, repeated as many times as needed to reach a fixed point, is defined as

min(G) = () min(G)

1€[1...5]
where
!/ /
 mim (@) * (VAL ELS) if 30— 0 € B | 0(v) =0() € {X>, @}
G otherwise
with E' = E\ {v—v'}\ U {v—=wvtU U {v—uol,
ve€childs(v’) ve€childs(v')
/
" ming(@) & (V\{o}, E\%) if Jo—v € E|6v) =0() € {X P }
G otherwise

with E' = E\ {v— v} \ U {v, = v} U U {vp, = v'},

vpEparents(v) vpEparents(v)

(V,EN{v = v}%) if3v—v €E|0v) =&, A W)=

G otherwise

— ming(G) = {

min4<G)d:ef{(V\{v},E’,E) if v eV |0(v) € {X @} A [childs(v)| =1

G otherwise

with E' = E'\ {v, = any(parents(v)) — v,v — v, = any(childs(v))} U {v, — v.},

min5<G)d:ef{(V\{v},E’,E) if JveV |0 €{® @ } A |parents(v)| =1

G otherwise
with E' = E'\ {v, = any(parents(v)) — v,v — v, = any(childs(v))} U {v, = v.}.

These rules can be represented graphically, as shown in Figure 2.3. Figure 2.3(b), rep-
resenting rule min;, depicts the fusion of two consecutive split gateways of same type.
Figure 2.3(d), representing rule mins, illustrates the fusion of two consecutive merge gate-
ways of same type. Figure 2.3(f), representing rule ming, describes the removal of a useless
(empty) flow of a parallel gateway. Figure 2.3(h) (resp. 2.3(j)), representing rule miny
(resp. mins), shows the removal of a useless parallel split (resp. merge) gateway.

Remark 2.5. These rules are complete and deterministic, in the sense that there exists
no other minimisation rule that can be applied to the subset of BPMN handled in this
thesis, and that, disregarding their order of application, these rules will always lead to the
same final unique minimal BPMN process. For instance, enlarging the scope of rule ming
to handle exclusive gateways would modify the semantics of the original process, as an
exclusive gateway with an empty flow has a well-defined semantics in BPMN.
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(a) BPMN Process Before Applying the
Minimisation Rule miny

(b) BPMN Process After Applying the
Minimisation Rule min;

(¢) BPMN Process Before Applying the
Minimisation Rule mino

(d) BPMN Process After Applying the
Minimisation Rule mino

(e) BPMN Process Before Applying the

Minimisation Rule ming

(f) BPMN Process After Applying the
Minimisation Rule ming

(g) BPMN Process Before Applying the

Minimisation Rule miny

O—{ T -0

(h) BPMN Process After Applying the

Minimisation Rule miny

O—{ T -0

(i) BPMN Process Before Applying the
Minimisation Rule ming

O~ =0

(j) BPMN Process After Applying the
Minimisation Rule ming

Figure 2.3: Hlustration of the Minimisation Rules
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2.4.2 Resources

In this work, tasks may require resources to be executed. This representation models the
fact that, in practical situations, a task will probably require some resources to be executed,
such as an employee or a machine. For instance, to perform a task such as packaging a
good, one may require a worker to put the good in the box, and a tape machine to tape the
box. However, the model does not yet handle consumable resources, and considers that a
resource can be used infinitely often, as long as it is available.

In the rest of this thesis, a resource will be represented with the symbol r, and will have
a label (or name) [, retrievable with the operator o(r). The set of resources required by
the tasks of a BPMN process to execute will be denoted S,.,. Similarly to graphs, the set
of all resource names of a BPMN process (i.e., the resources in S,.s) will be denoted X ;.
The resources required by a given task of a BPMN process can be retrieved using a task
resource operator.

Definition 2.25 (Task Resource Operator). Let G = (V, E, X) be a BPMN process. For
all v € V such that 0(v) = , we define the task resource operator p: V — (S5 — N)

p(v)(r) = n

where n is the number of replicas of v required by v, or 0 if v does not require any replica
of r to execute.

In a real-world context, a resource is usually associated to a cost that describes the amount
of money required to use this resource for a given duration. Without loss of generality, we
consider that each task r is associated to a cost ¢ given in dollars per unit of time ($/UT).
The cost of a resource can be retrieved using the operator cost(r). Similarly, the number
of resources usually available is finite. To stick to this representation, we make use of a
resource pool to map every resource of S, to its available number of replicas.

Definition 2.26 (Resource Pool). Let G = (V, E, ) be a BPMN process and let Syes
be the set of resources required by G’s tasks to execute. A resource pool of G, noted P, is a
set of 2-tuples consisting of a resource of Sy.s and its number of available replicas, defined
as

P = {(r,n) € Syes x N | 0 is the number of available replicas of v}

Remark 2.6. [t is worth noting that the (simplified) resources model adopted in this the-
sis considers that resources are available continuously, e.g., an employee never takes a

coffee/lunch break.

For a BPMN process to be executable, the available resource pool of the process must
contain at least the maximum number of replicas of each resource required by a task of
the process. This pool of resources is called minimal resource pool.

Definition 2.27 (Minimal Resource Pool). Let G = (V, E, X) be a BPMN process
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and let Syes be the set of resources required by G’s tasks to execute. The minimal pool of
resources of G is defined as

Prin ={(r,n) € Syes x N | n = max p(v,r)}
ve

To facilitate the usage and the readability of resource pools, we introduce several useful
operators.

Definition 2.28 (Resource Pool Operators). Let G = (V, E, X) be a BPMN process
and let P be a resource pool of G. We define the following operators on P:

— Y(r,n) € P, P(r) =n returns the number of available replicas of r in P;
— Y(r,n) € P, ¥n' € N, P[r— n'] = P’ updates the number of available replicas of r
ton' in P such that P[r — n'|(r) =n'.

Finally, we provide a comprehensive definition of the comparability of two resource pools.

Definition 2.29 (Resource Pools Comparison). Let G = (V, E, X) be a BPMN process
and let P, P’ be two resource pools of G. We define the following comparisons of P and
P

— PC P &VY(r,n)e P, Pir)<P(r);

— PC P &V(r,n)e P, P(r)<P/(r);

— P¢P e ~(PCP);

— P¢ P e ~(PCP);

— P=P < (PCP)AN(P CP)

— P#P &~(P=P)

2.4.3 Execution Flow

In BPMN, the execution flow of a process is controlled by tokens, represented with the e
symbol and denoted 7 (as shown in Figure 2.1). These tokens circulate through the process
from its start event to its end events, and can be produced and/or consumed depending
on the control-flow elements that they encounter. The position of the tokens at a given
time indicates which portions of the process are currently being executed.

Both nodes and flows can hold token. A node holding a token is written 0, while a flow
e =v — v € E holding a token is written either v = v/ or ¢. To complete its execution,
a node either transmits its token to (one of) its outgoing flow(s), consumes its incoming
tokens and produces a new one, or produces several tokens, depending on its type. It is
worth noting that processes are not necessarily safe, i.e., a node may hold several tokens
at the same time. A task must acquire the resources that it needs to execute (if any)
and wait for its duration (if any) before being allowed to transmit its token to its (unique)
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outgoing flow. An exclusive split gateway non-deterministically sends its token to one of its
outgoing flows only, while an exclusive merge gateway transmits the token that it received
to its (unique) outgoing flow. A parallel split gateway produces new tokens and sends one
to each of its outgoing flows, while a parallel merge gateway consumes the tokens that it
received from its incoming flows, and produces a new token that is sent to its (unique)
outgoing flow. It is worth noting that a parallel merge gateway must wait for each of its
incoming flows to hold a token before consuming these tokens and produce a new one sent
to its outgoing flow.

The current state of a BPMN process, i.e., the number of tokens currently hold by the
nodes/edges of that process, is called a configuration.

Definition 2.30 (Configuration). Let G = (V, E, X) be a BPMN process. A configura-
tion s a set

C=Z{(v,m) eV xN, YweV}U{(e,n) € ExN, Vec E}

where m and n represent respectively the number of tokens currently hold by a vertex v or
an edge e.

To facilitate the usage and the readability of configurations, we introduce several useful
operators.

Definition 2.31 (Configurations Operators). Let G = (V, E, X) be a BPMN process,
let C' be any configuration of G and let A=V U FE. We define the following operators on
C:

— VYa € A, C(a) = k returns the number of tokens currently hold by a in C;

— VYa e A, VK € N, Cla — k'| = C" updates the number of tokens currently hold by a
in C' such that Cla — k'|(a) =K .

The initial configuration of a BPMN process, called Cj, is a configuration in which only
the initial event of the process holds a token.

Definition 2.32 (Initial Configuration). Let G = (V, E, X) be a BPMN process. The
initial configuration of G is a configuration C; defined as

Ci 2 {(v,0) [v eV AO@w) # ()} U {(e,0), Ye € E} U {(vs, 1) [ v €V A 0(vs) = (5)}

In the context of BPMN processes enriched with durations for tasks, there is a need for a
global timer that is in charge of simulating discrete increases of the time based on a global
clock, such that each tick of its clock represents one unit of time (1UT).

Definition 2.33 (Global Timer). Let G = (V, E, X) be a BPMN process. The global
timer of G is represented as a set of pairs, each containing a task and its remaining exe-
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cution time. It is defined as
T (v,n) e VxN|0@v) = A nell..5(w)}

To facilitate the usage and the readability of global timers, we introduce several useful
operators.

Definition 2.34 (Global Timer Operators). Let G = (V, E, X) be a BPMN process and
let T be its global timer. We define the following operators on X:

— Y(v,n) € T, T(v) =n returns the remaining execution time of task v;
— V(v,n) € T, Vn' € [1...6(v)], T[v — n'] = T updates the remaining execution time
of task v to n’ such that T[v — n'|(v) =n'.

Every 1UT, the global timer makes a tick which makes the process move from one config-
uration to another. This change of configuration is ruled by the multiple semantic rules
shown in Figures 2.4, 2.5, and 2.6.

The sanity rule of Figure 2.4 performs a first check to ensure that only the elements of
the process currently holding tokens will be considered for the transition. The sequential
composition rule details how the movement of multiple tokens in the process is handled,
with a particular attention provided to the resulting configuration and the resulting global
timer.

The parallel split rule of Figure 2.5 states that if a token holder is a parallel split gateway,
its outgoing flows will possess as many tokens as it possesses in the resulting configuration,
while the parallel split will not possess tokens anymore. The exclusive split rule states
that if a token holder is an exclusive split gateway, a probabilistically chosen set of its
outgoing flows will possess one more token, while the exclusive split will not possess tokens
anymore. The finished task rule states that when the global timer contains a task of
remaining duration equal to 1, it will send its token to its child in the next configuration,
its resources will be released, and its execution information will be removed from the
global timer. The non-finished task rule states that when the global timer contains a task
of remaining duration greater than 1, the global timer of the next configuration will simply
decrease this duration by 1UT. The general rule for vertices states that for all the other
vertices, all the tokens hold by these vertices are transmitted to their child in the next
configuration, while their number of tokens is set to 0.

The start task rule of Figure 2.6 applies if the outgoing vertex of an edge is a task. For each
token hold by the incoming flow of that task, the current pool of resources will be reduced
by the number of resources required by the task, the global timer will add the duration of
that task as remaining time of the current instance of that task, and the number of tokens
hold by that task will be increased by one in the next configuration, while the number of
tokens hold by its incoming flow will be reduced by 1. The parallel merge rule verifies the
number of tokens hold by the incoming flows of a parallel merge gateways, and if all these
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ACA| (Vie0.n], Cla) £0)A(Ya; € A\ A, Ola)) =0) (C,P,T) L (Cu, Pa,S)
(C,P,T) % (Ca, Py, Ta)

where A = {aq, ..., a,}.

(a) Sanity Rule

(C, P, %) X (Coy, Py Tay) (O, Pay, T) 222 (@, P, T,
(€, P, %) Lottt o e O, Py Ty © T

where:

— Coy & Ca,, = ao = x0; ...; an — xy) with, Vi € [0...n], x; = Cyy(a;) + Cy, (a;) — C(a;);
— Tao D %0, = U {(ag, min{xg, z,.}) | ap = a,}.

((al)ﬂ'(i)-(an,«mn))E‘Iu“ X‘:‘:an

(b) Sequential Composition Rule

Figure 2.4: General Transition Rules

flows hold at least one token, the minimum number of tokens hold by these incoming flows
is removed from them and added to the parallel merge gateway in the next configuration.
The general rule for edges simply transmits the tokens hold by an edge to the outgoing
vertex of that edge in the next configuration.

The application of these rules is called a configuration transition.

Definition 2.35 (Configuration Transition). Let G = (V, E, X) be a BPMN process,
let C' be any configuration of G, let P be any resource pool of G such that P, C P,
and let T be the global timer of G. FEwvery tick of the global timer triggers a configuration
transition which pushes forward all the tokens of the current configuration once, according
to the transition rules presented in Figures 2.4, 2.5, and 2.6. This is written

push((C, P, %)) = (C", P', T
where C" is the resulting configuration, P’ the resulting pool of resources, and %' the result-
ing global timer.

The execution of a sound BPMN process terminates in a configuration in which only end
events hold tokens, called final configuration.

Definition 2.36 (Final Configuration). Let G = (V, E, ¥) be a BPMN process, let P
be any resource pool of G such that P,,;, C P, and let T be the global timer of G. A final
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(a,n) €C fla) =@, Vd €childs(a)

(C,P,%) A (C[(a,a") — C((a,a")) +n;a — 0], P, T)
(a) Parallel Split Rule

(a,n)e C  B(a) = ®S Va' € any, (childs(a),n)

(€, P, %) ™ (Cl(a,a’) = Cl(a, @) + Liars 0], P,T)
(b) Exclusive Split Rule

(a,n) e C  Ha) = T(a)=1 Vrepla) a =childs(a)[0]

(€, P, %) 1% (Clla,ar) = C((a,a)) +mia = O], Plr > P(r) + pla)(r)], T\ {(a.1)})
(c) Finished Task Rule

(an)eC  Oa)=(t] T(a)>1
(. P,%) 1% (¢, P, %[0 %(a) - 1))
(d) Non Finished Task Rule

(a.n) €C  6(a) ¢ {<.|>S7®S;} ' = childs(a)[0]
(€, P,T) 1 (Cl(a, ) = Cl(a, @) + nia — 0, P, )

(e) General Rule for Vertices

Figure 2.5: Vertices Transition Rules
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(v,0),n) €C B) = Vi€ [L..n](vr € p(v)), p(v')(r) < P(r))
{

(C,P,%) oy (Clv' = C()+ L;a—n—1], Plr— P(r)— p()(r)], T[v; — §(v")])
(a) Start Task Rule

((v,0"),n)e C  O() = @M m = min{C((vp,v'))}  V,={v),...,v5} = parents(v')

vpEVp

C,P,% 9 (Ol s O +m; 00 = C(v9) —m;..;v8 — C(vs) —m], P, ¥
P P P P
(b) Parallel Merge Rule

(v,o)n) e 60) ¢{P> [t}

(€, P,%) % (Cl = C() +niams 0], P,T)
(c) General Rule for Edges

Figure 2.6: Edges Transition Rules

configuration of G' is a configuration Cy defined as

Cr = {(v,0), Yo € V\ Vona} U {(e,0), Ve € E}

where Vg ={v eV | 0(v) = @}
Remark 2.7. By definition, a final configuration is idempotent regarding the push opera-
tion, i.e., push((Cy, P, X)) = (Cy, P,X) for any final configuration C;.
The list of configurations that a process went through during its execution is stored in a
history.
Definition 2.37 (History). Let G = (V, E, ¥) be a BPMN process. An history of G,
noted H, is a n-tuple ((C1, P1,%1)...,(Cpn, Po,Ty)), such that:

— Vie[l..n]:

- C} is a configuration;
— P; is a resource pool;
~ %, is a global timer;
— (' s an initial configuration;
— Vi S [1n — 1], (Ci—i-h -Pz'—l—l; Tz’—&—l) = p'LlSh((CZ', R,‘L))

It can be retrieved using the operator H(G).

If a BPMN process is sound, it necessarily terminates, thus its history is said to be complete.
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Definition 2.38 (Complete History). Let G = (V, E, X) be a BPMN process. A
complete history of G is an history Ho = ((Cy, P1,%1)..., (Ch, Pny, %)) such that Cy, is a
final configuration.

The execution of a process can also be defined in terms of traces, each of which representing
a possible ordering of the tasks of the process, ruled by its possible execution.

Definition 2.39 ((Execution) Trace). Let G = (V, E, X) be a BPMN process and let
Sy be the set of all possible histories of G. A trace of G is a tuple A = (vq,...,v,) such
that:

—Vie L), 0() =( t )

— There ezists H € Sy such that the (vy,...,v,) appear in the exact same order in A

and H.
The set of all traces of a process is written A, and can be retrieved using the operator A(G).

Remark 2.8. The notions presented in this section suppose that the considered BPMN
process is enriched with both durations and resources. However, they remain valid in a
simpler context where the BPMN process does not have durations nor resources. The
difference lies in the usage of a resource pool P and a global timer €, that are no longer
useful in the simple context. This affects the transition rules presented in Figures 2.4,
2.5, and 2.6 with the small variations highlighted in red. It is also worth noticing that, if
resources and durations are not considered, rule (5) and (6) are strictly equivalent to rule
(7), and rule (8) to rule (9). Thus, rules (5), (6), and (8) are discarded in this case.

2.4.4 Metrics

Several performance indicators or metrics can be computed on a business process extended
with quantitative aspects, such as execution times, synchronisation/waiting times, resource
usage, or total costs. The execution time of a process represents the difference between the
time at which a token reaches an end event and the time at which the initial token was
sent away from the initial event of that process. In our discrete context, it can be seen as
the number of clock ticks required to reach a final configuration from an initial one. In
other words, it is the number of elements belonging to a complete history of the process.

Definition 2.40 (Execution Time). Let G = (V, E, X) be a BPMN process, let P be
a pool of resources, and let He be a complete history of G obtained by executing it with
resource pool P. The execution time of G with regards to H¢ can be defined as

ETy. (G, P) = [Hc|

In case of conditional structures, the execution of a process may vary. So does its history.
However, there is one interesting notion for reasoning on quantitative aspects of a process
containing such structures, that is, its worst-case execution time.
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Definition 2.41 (Worst-Case Execution Time). Let G = (V, E, X) be a BPMN process,
let P be a pool of resources, and let Sy . be the set of complete histories of G, representing
each of its possible erecutions with resource pool P. The worst-case execution time of G
corresponds to the time taken by the longest execution of G to complete, that is

WCET(G,P) = max ETx.(G,P)

HCGSHC

However, the worst-case execution time of a process is not necessarily computable. Indeed,
a process containing loops has an infinite number of complete histories, as the probability of
doing one more iteration of the loop can never reach 0. To palliate this issue, we provide a
slightly different version of the worst-case execution time, based on a finite set of complete
histories. This notion is called stochastic worst-case execution time.

Definition 2.42 (Stochastic Worst-Case Execution Time). Let G = (V, E, %) be a
BPMN process, let P be a pool of resources, and let S%gl = {H{, ..., HL} be the set of
complete histories of G, representing each of its possible executions in which loops proba-
bilities do not exceed the threshold of 0.01 (i.e., 1%) with resource pool P. The stochastic
worst-case execution time of G corresponds to the time taken by the longest such execution
of G to complete, that is

SWCET(G, P) = max ETy; (G, P)

i€[l..n]

As the set of complete histories representing the possible executions of a process in which
loops probabilities do not exceed the threshold of 0.01 is necessarily defined, the stochastic
worst-case execution time of a process is always properly defined. Given a process execu-
tion, one can also obtain the average resources usage of the process, which corresponds to
the resources usage of the process aggregated over time.

Definition 2.43 (Average Resources Usage). Let G = (V, E, X) be a BPMN process,
let P be the available pool of resources of G, and let Ho be a complete history of G ob-
tained by executing it. The average resources usage of G with regards to He is a n-tuple
((r1,u1), ..y (rn, uy)) where ¥i € [1..n]:

— 1r; € P 1s a resource;

|H%*1 P(r)—Hc[[1](r:)

_ ) ,
U z Py is the percentage of use of resource r;.

© T THel
Similarly to the resource usage of a task, the py.(G)(r) operator can be used to obtain the
average usage of a given resource r during the execution of G represented by He.

Derived from the notion of resources usage, one can define the cost of executing a given
process. This cost corresponds to the sum of the costs of the resources used by the process
during its execution.
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Definition 2.44 (Total Cost). Let G = (V, E, X) be a BPMN process, let P be the
available pool of resources of G, and let Heo be a complete history of G obtained by executing
it. The total cost of G with regards to He is a value defined as

Cue = |Hel - Z P(r) x cost(r)

(r,n)eP

Remark 2.9. The shape of the total cost function comes from the fact that the cost per
resources is considered the same whether the resource is used or not. Thus, the usage of
each resource at each clock tick is not required to obtain the result.

Another interesting metric, crucial in the work presented in this thesis, consists in mea-
suring the waiting/synchronisation time of parallel merge gateways. Indeed, by definition,
a parallel merge receives (and consumes) a token only when all its parent flows possess
at least one token. However, there might be a non-negligible time gap between the time
at which the first parent flow of the gateway receives a token, and the time at which the
last one does. This duration, inducing delays in the execution of the process, is called the
synchronisation time of parallel gateways.

Definition 2.45 (Synchronisation Time). Let G = (V, E, ) be a BPMN process and
let He be a complete history of G obtained by executing it. For all v € V such that
O(v) = @M, the synchronisation time of v with regards to H¢e is defined as

STHC(U) o tf - ti
where
— t; =t € [1...|H¢|] such that:
— Ju, € parents(v) | Hcl[t][0](v,) # 0
— Yu, € parents(v) | Helt — 1][0](v,) =0
— ty =t € [l...|Hc|] such that:
— Vv, € parents(v) | Hcl[t][0](v,) # 0
— Ju, € parents(v) | Helt — 1][0](v,) =0

In the context of this work, BPMN processes may not be executed only once, but multiple
times, each execution being called an instance of the process. The time separating the
start of each instance of the process is called rate. The 2-tuple composed of the number of
instances of the process being run, and the rate at which each of these instances will start
is called a workload.

Definition 2.46 (Workload). Let G = (V, E, ¥) be a BPMN process. The workload of
G is defined as a 2-tuple W = (N, R) where:

— N € NU {00} represents the number of instances of G being run;
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— R ~ P represents the rate at which each new instance of G will start, following any
probability distribution P.

Remark 2.10. A workload W = (N, R) is said to be a closed workload if N # oo.

In the rest of this thesis, only closed workloads will be considered, and the rate of a given
workload will be called inter-arrival time (IAT). In this context, the execution time becomes
the average of the execution times of the running instances, called average execution time
(AET), the resources usage simply becomes the average usage of the resources over all the
running instances, and the total cost of the process becomes the sum of the total costs
of the running instances. Also, all the instances share a unique pool of resources, whose
composition may drastically affect the aforementioned metrics.

All these indicators can be computed using simulation techniques [DRS19] based on the
transition rules of processes executions defined in the previous section. In a few words, the
simulation starts by performing the first task of the first instance of the process. If there
are several parallel tasks to execute, it tries to execute all of them, based on the number of
replicas of each of the resources required by these tasks. If there are not enough replicas
of a resource, as many tasks as possible requiring that resource are non-deterministically
chosen and executed. The ones that could not execute remain waiting. After a time R,
another instance starts, complexifying the access to the shared resources, and the selection
of the tasks that will execute. The simulator then considers those two instances running in
parallel. The simulation ends when all the tokens send through the system have reached
an end event.

2.5 Model Checking

Model checking [BKO08] is a well-known technique consisting in verifying that a model
represented as a transition system satisfies a given temporal logic property, which specifies
some expected requirements of the system. One of the most common types of transition
system used by model checkers is the labelled transition system [Mil89, Hoa78|.

Definition 2.47 (Labelled Transition System). A labelled transition system, abbreviated
LTS, is a 4-tuple M = (S, s°, %, T) such that:

— S is a finite set of states;

— sY € S is the initial state;

— 3 is a finite set of actions, or labels;
— T C S x X xS isa finite set of (labelled) transitions.

A transition is thus a 3-tuple (s,l,s"), where l € ¥ and s,s' € S. For clarity, it is usually
represented as s — .

An LTS can be viewed as all possible executions of a system. One specific execution is
called a trace.
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Definition 2.48 (LTS Trace). Let M = (S, s°, %, T) be an LTS. A trace of M is a sequence

of labels A = (I, 1o, ..., 1,) € X" such that Vi € [1..n], s} Ly st € T. The set of all traces
of M is written A, and can be retrieved using the operator A(M).

The verification of such a system is usually done by formalising the expected behaviour
of that system with a set of temporal logic properties. Several temporal logics exist in
the literature, and are usually divided into two families: linear time logics, which assume
that time is linear, i.e., there is only one possible future at each instant of time, and
branching-time logics, which assume that at each moment, time may split into alternate
courses representing different possible futures [EH83]. Among them, we can cite several
famous ones such as the Linear Temporal Logic (LTL) [Pnu77], the Computation Tree
Logic (CTL) [CE82], CTL* [EHS83], or the Model Checking Language (MCL) [MTO08].
Temporal logic properties are themselves usually divided into two distinct families: safety
and liveness properties [BK08|. Safety properties state that something bad must never
happen while liveness properties state that something good will eventually happen. In
this thesis, we focus on the Linear Temporal Logic because it is rather simple to use and
expressive enough to represent properties on execution paths.

The LTL syntax consists of propositions, logical operators (-, V, =, ...), and temporal
operators (X, U, G, F, W, ...). For two LTL properties ¢ and v, and a state s of the
model, the meaning of these operators is defined as:

— — holds in s if ¢ does not;

— @V 1 holds in s if ¢ holds or if ¥ holds;

— ¢ = ¢ holds in s if —¢ holds or if ¥ holds;

— X ¢ requires ¢ to hold in the state following s;

— ¢ U 1 requires ¢ to hold in s and all its future states until reaching a state s’ in
which v holds;

— G ¢ requires ¢ to hold in s and all its future states;

— F ¢ requires ¢ to hold in s or (at least) one of its future states;

— ¢ W 1 requires ¢ to hold in s and all its future states or to hold until reaching a
state s’ in which v holds.

When a model checker is given as input a model M and a temporal logic property ¢,
it verifies whether this property holds on the model or not. If the property is satisfied,
i.e., if it holds for every trace of the model, written M | ¢, it simply returns True.
Otherwise, if the property is violated, written M [~ ¢, it returns False, and usually provides
a counterexample of that property. In this thesis, a counterexample is a trace of the LTS
that does not satisfy the given property.

Definition 2.49 (Counterexample). Let M = (S,s°,%,T) be an LTS and let ¢ be a
temporal logic property such that M [~ ¢. A counterexample of M is a trace A € A(M)
such that X [~ .
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Chapter 3

Modelling BPMN Processes from
Textual Requirements

“If you can’t describe what you are
doing as a process, you don’t know
what you're doing.”

William Edwards Deming
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Modelling business processes is a common task that companies perform in order to obtain a
graphical representation of their business processes. However, this is a challenging task, as
it can quickly become tedious and error-prone. On the one hand, it usually requires a deep
understanding of the company’s needs and of its intrinsic way of functioning. Consequently,
this task often becomes time-consuming too. On the other hand, it necessitates strong
competences in modelling, and in particular an advanced knowledge of the BPMN notation.
Indeed, the BPMN modelling tools allow a lot of freedom in the design of the processes, and
usually do not provide integrated solutions for asserting their correctness. Thus, a novice
user can quite easily design a syntactically or semantically incorrect process. Moreover,
complex constructs, such as unbalanced gateways or nested loops, may be challenging
to handle for inexperienced users. For these multiple reasons, we propose an approach
aiming at automatically generating a business process in the BPMN notation from a textual
representation of it, while providing strong guarantees to its semantics.

The approach proposed in this chapter only requires a textual description of the process-
to-be, written in natural language. To gain in accuracy, the description may (but is
not required to) provide names to the tasks that should appear in the process. If the
tasks that should appear in the process are already named, the description is sent to
a fine-tuned version of GPT, which is in charge of extracting all the relationships, or
ordering constraints, that may exist between them. These constraints, which describe the
relationships of the tasks with regards to their siblings, are decomposed in four categories:
(i) the sequential constraints, symbolising the fact that some tasks should be executed
before some others, (ii) the mutual exclusion constraints, symbolising the fact that some
tasks are mutually exclusive of some others, (iii) the (explicit) loop constraints, symbolising
the fact that some tasks can be repeated, and (iv) the parallel constraints, symbolising
the fact that some tasks can be executed in parallel. As a result, GPT returns a set
of expressions compliant with a grammar that we defined, and which encompasses the
behaviour of all the business processes that can be written considering the excerpt of the
BPMN syntax presented in Figure 2.1. However, we said that the user was not required
to name the tasks of the process, and could pursue with the original, “raw” description.
In this case, the description is first sent to the classical version of GPT (currently, GPT-
4.5-preview), which is asked to analyse the description, infer some tasks from it, name
them, modify the description to replace the portions of text corresponding to these tasks
by their name, and return the modified description. This new description is then given to
the fine-tuned version of GPT.

Generating a BPMN process from a set of expressions representing the ordering constraints
that must exist between its tasks mostly consists in gathering the information sparsed in
these expressions in a structure that can eventually be converted into a BPMN process. The
structure chosen in this approach is a graph, as it can easily be mapped to the correspond-
ing BPMN process. The graph is built by analysing the sequential constraints belonging to
the expressions returned by GPT. It is then converted to BPMN by introducing the miss-
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Figure 3.1: Overview of the Approach

ing control flow elements (events and gateways), while preserving its semantics. Finally,
the three other possible types of constraints, namely, the mutual exclusion constraints, the
explicit loops, and the parallel constraints, are considered, and their behaviour is incorpo-
rated into the BPMN process. The generated BPMN process is eventually returned to the
user. These steps are recalled in Figure 3.1.

This approach was fully implemented and consists of approximately 12k lines of Java code.
Details about its implementation and its evaluation will be given in Section 5.1 of this
manuscript.

3.1 Textual Requirements

In this work, the user must provide as input a textual representation of a business process
that is going to be generated. This description is informal, in the sense that no prerequisite
is required to be able to write a valid one. In this description, the user expresses in natural
language the tasks that the process should contain, along with their ordering constraints.
For instance, if two tasks must be executed one after the other in the final process, this
should be stated in the description. To improve the results, the user is advised to name the
tasks that should appear in the process. However, this is not mandatory for the approach
to work.

Running example. Let us propose as running example the textual description of a soft-
ware feature management process: “First, the developer StartFeatureManagementSoft-
ware (StFMS). Then, he DescribeNewFeature Requirements (DNFR). After that, the staff
ValidateInternally (VI), and the client ValidateExternally (VE). Once the feature has been
validated internally, the developer can CreateNewFeatureBranch (CNFB). Once the fea-
ture is completely validated (internally and externally), the staff can StartTechnicalDe-
sign (STD). Instead of describing a new feature, validate it, create a new branch and start
technical design, the developer can also LoadCurrentlyDevelopedFeature (LCDF). The Fea-
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tureDevelopment (FD) then eventually starts, followed by a DebuggingPhase (DP) useful to
chase possible bugs before releasing the feature. This phase leads either to a BugCaseOpen-
ing (BCO), or to ReleaseFeature (RF) if no bug was found. If a bug case is opened, three
different operations may start: either the first support level initiates a FirstStageDebug-
Phase (FSDP), which eventually leads to ClosingFirstLevelRequest (CFLR), or the second
support level initiates a SecondStageDebugPhase (SSDP), which eventually leads to Clos-
ingSecondLevelRequest (CSLR), or the third support level initiates a ThirdStageDebug-
Phase (TSDP), which eventually leads to ClosingThirdLevelRequest (CTLR). Once these
phases are closed, either there is no bug anymore to correct, and the ReleaseFeature task
(RF) occurs, or a new bug is found, leading to DebuggingPhase (DP) again. Also, the
FirstStageDebugPhase (FSDP), SecondStageDebugPhase (SSDP) and ThirdStageDebug-
Phase (TSDP) and their closing can be repeated until a bug is properly corrected. Once
ReleaseFeature (RF) occurred, the developer can either ShutdownFeature ManagementSoft-
ware (ShFMS), or start again with the DescribeNewFeature Requirements task (DNFR).”

As the reader can see, the specification is rather informal, except that names are given to
the tasks that should appear in the process. The specification can be written in various
styles, with or without context surrounding the important information. The acronyms
written between parenthesis are not mandatory, and are presented here to shorten the size
of the future examples.

3.2 Task Ordering Constraints

To generate a BPMN process from a textual description, one of the intermediate steps
consists in extracting some task ordering constraints from the text. These constraints
represent the way in which the tasks that should appear in the process are related to each
others. Based on the supported fragment of the BPMN syntax presented in Figure 2.1,
we defined 5 different types of constraints between tasks: (i) the sequential constraint,
expressing the fact that two tasks must be executed in a certain order, one after the other,
(ii) the mutual exclusion constraint, expressing the fact that, if one of the two tasks is
executed, then the other one should not be, (iii) the parallel constraint, expressing the fact
that two tasks can be executed at the same time, (iv) the looping constraint, expressing
the fact that two tasks can be repeated, and (v) the absence of constraints, expressing the
fact that two tasks are not constrained to each other.

To analyse such constraints, one needs to express them in a systematic way removing any
ambiguity that may appear in their natural language description. In this work, we rely
on a simple language defining operators for the five types of constraints presented above.
These operators are:

— the ‘<’ operator, handling the sequential constraint (associative, not commutative,
not idempotent)

— the ‘|” operator, handling the mutual exclusion constraint (associative, commutative,
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idempotent)

— the ‘&’ operator, handling the parallel constraint (associative, commutative, idem-
potent)

— the ‘«’ operator, handling the looping constraint (associative, commutative, idempo-
tent)?

— the ‘,” operator, handling the absence of constraint (associative, commutative, idem-
potent)

To be able to specify constraints in this language, one must obey the rules of the following
Backus-Naur Form (BNF) grammar:?

(E) ==t | ((E) [ (Ei){op) (E2) | ((E1))*

<Op> e 1‘7 | L&? ‘ (<7 | (’7

where t is a terminal symbol representing (the name of) a task of the process.

To remove any possible ambiguity from this language, we must also provide priority be-
tween its operators. Indeed, without such a notion, one could not state whether the
expression (E;) < (Es) | (Es3) is equivalent to the expression ((E) < (E2)) | (E3), or to the
expression (E;) < ((Eg) | (E3)). By abusively borrowing the ‘<’ symbol from the partial
order notation, the priorities between the operators of this language can be written this
way: ‘«’ < < ‘<0< &’ < )" Consequently, one can now state that expression
(E1) < (Eq) | (E3) is equivalent to expression ((E1) < (Eg)) | (E3) (the ‘|” operator having
a higher priority than the ‘<’ operator). In the rest of this work, the set of expressions
returned by GPT will be called Expr. Similarly to graphs paths, the operator tasks(e)

will be used to retrieve all the tasks belonging to an expression e € Expr.

Example. Let us consider the textual description of the running example. By analysing it,
one can generate the following set of expressions Expr, containing 10 expressions capturing
all the tasks ordering constraints belonging to the description:

(1) StFMS < DNFR < (VI, VE)

(2) VI < CNFB

(2) (VI, VE) < STD

(4) (DNFR, VI, VE, CNFB, STD) | LCDF

(5) (STD, CNFB) < (FD < DP)

(6) DP < (BCO | RF)

(7) BCO < ((FSDP < CFLR) | (SSDP < CSLR) | (TSDP < CTLR))
(8) (CFLR, CSLR, CTLR) < (RF | DP)

'We will see that, due to the definition of the grammar, these notions can inherently not be applied to
this operator.
2This is why the ‘*’ operator’s associativity /commutativity /idempotence is not useful.
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(9) (FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)x
(10) RF < (ShFMS | DNFR)

As an illustration, expression (7) means that task BCO must be executed before tasks
FSDP, CFLR, SSDP, CSLR, TSDP, and CTLR. Moreover, it also means that task F.SDP
must be executed before task CFLR, task SSDP must be executed before task CSLR,
and task TSDP must be executed before task C'TLR. Finally, it also means that tasks
FSDP and CFLR are mutually exclusive of tasks SSDP and CSLR, which are themselves
mutually exclusive of tasks T'SDP and CTLR.

3.3 Fine-tuning GPT-40

Inferring ordering constraints from a textual description is not a trivial task, as it re-
quires complex mechanisms to understand the structure of the text, extract its compo-
nents (i.e., the tasks), and discover the possible relationships connecting them. In this
work, Large Language Models (LLMs)—and more precisely, the GPT model [ea24b]—are
used to perform this analysis. GPT, which stands for Generative Pre-trained Transformer,
is an open-access generative model developed by OpenAl, and freely accessible through the
well-known website ChatGPT3. GPT, and more precisely its “40” version, is used in this
work for its natural language processing capabilities, that are helpful to extract expressions
corresponding to the language presented in Section 3.2 from a textual description.

The standard version of the GPT-40 model (GPT, as a shorthand, in the rest of this
manuscript) has no knowledge about the expected format that its output should take, that
is, the language defined in Section 3.2. Thus, it is not straightforward for it to generate
expressions compliant with this language. To mitigate such issues, GPT can be fine-
tuned [WCF'25] in order to increase its capabilities in precise fields. Roughly speaking,
fine-tuning is an approach consisting in improving the capacities of a model on a specific
field by training it on a well-defined set of new data. Often, fine-tuning becomes a tedious
task as adjusting hyper-parameters and providing sufficient data can be rather complex and
time-consuming. Hopefully, GPT proposes some intuitive and easy-to-follow fine-tuning
options, which do not require large amounts of data to get started. This phase, which
can be repeated at any time to improve the quality of the results, has been performed on
approximately four hundred examples in the context of this thesis. It is worth noting that
the fine-tuning phase was performed on the “40” version of GPT, which was the latest
version of GPT available for fine-tuning at the moment this work has been done.

The training examples provided to GPT consist of three elements. The first one is a
system prompt, which describes the expected behaviour of GPT (i.e., the fact that GPT
should extract task ordering constraints from the textual requirements given as input)
and the shape that its output should take. The second one is a user prompt, usually
corresponding to the question asked by the user (i.e., the textual requirements here). The

3https://chatgpt.com/
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last one is an assistant prompt, corresponding to the answer that GPT should provide. For
the system prompt and the assistant prompt, the expected output is a set of expressions
corresponding to the language defined in Section 3.2. For all of them, an example is
provided in Appendix A.

Once training and validation data are given to GPT, the fine-tuning process starts auto-
matically. All over its fine-tuning, GPT provides metrics indicating how good the training
is going. The reader interested in them can take a look at Appendix B. When the fine-
tuning finishes, a new version of the base model is generated and made available to the
user. After this fine-tuning phase, the altered model was able to transform textual require-
ments into expressions. It is worth noting that GPT may generate several expressions to
represent all the task ordering constraints that it finds in a given description. It is for
instance the case in the running example, where the description states that: “After that,
the staff ValidateInternally (VI), and the client ValidateEzternally (VE). Once the feature
has been validated internally, the developer can CreateNewFeatureBranch (CNFB). Once
the feature is completely validated (internally and externally), the staff can StartTechni-
calDesign (STD)”. These information have to be split into two expressions: VI < CNFB
and (VI, VE) < STD, as shown in the example of Section 3.2. Indeed, a single ex-
pression, such as (VI, VE) < (CNFB, STD) would introduce the unspecified constraint
VE < CNFB.

3.4 Parsing & Refinement of Expressions

3.4.1 Expressions as Arborescences

The first step towards the construction of the BPMN process from the given set of expres-
sions consists in parsing these expressions, and transforming them into a computer-friendly
structure. In this work, this structure is an arborescence, which is a tree structure enhanced
with a root, and directions for its edges. Parsing an expression and producing the corre-
sponding arborescence can easily be achieved with classical parsing techniques [GJ07]. As
a result, one obtains a binary ordered arborescence T< = (V, E, R) hierarchically represent-
ing the semantics of the expression, whose vertices are operators of the language defined in
Section 3.2, and whose root is the operator of highest priority appearing in the expression.
Let us now define a convention for the arborescences used in this thesis, along with several
useful operators that will be used throughout this section.

Definition 3.1 (Arborescences Convention). Let T = (V, E, R) be an arborescence. We
define:

— @ as a verter v € V representing a task;

Y

— @ as a vertex v € V representing the ‘,’ operator;

— as a vertex v € V representing the ‘&’ operator;
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— @ as a vertex v € V' representing the ‘<’ operator;
— @ as a vertex v € V' representing the ‘|’ operator;

— @ as a verter v € V representing the ‘x’ operator;

— @ as a vertex v € V representing a (sub-)arborescence T; compliant with the above

convention.

Definition 3.2 (Arborescences Operators). Let T' = (V, E, R) be an arborescence. We
define:

— Forallv eV, O(v) e {t, ), ‘&, ‘<, |, «¥’}, which returns the type of the vertex

v,
def

— tasks(T) ={v eV | (v) =t} which returns the set of tasks belonging to T

Remark 3.1. As the defined language is associative, it is consequently right-associative and
left-associative. Thus, one can choose one or the other type of associativity without any loss
of generality. This choice will only impact the form of the generated arborescence (right or
left unbalancing, if any) and its structure (the arborescence is a binary arborescence).

So as to be handled properly, the relationship between arborescences and expressions must
be a 1-to-1 mapping, meaning that each expression must have its corresponding arbores-
cence, and that each generated arborescence must correspond to an expression.

Definition 3.3 (Expressions and Arborescences Mapping). Let Expr be a set of expres-
sions, and St_ be a set of binary ordered arborescences generated from these expressions.
By abusively borrowing the ‘|="symbol from mathematical logic, we can write that:

— For all e € Expr, there exists T< € Sy such that T< = e;
— For all T< € St_, there exists e € Expr such that e = Tx.

Example. Considering the 10 expressions of the running example, one can build the 10
binary ordered arborescences shown in Figure 3.2. Arborescence (1) illustrates the fact
that we chose right-associativity, as its root node corresponds to the first ‘<’ operator of
expression (1). In case of left-associativity, the root node would have corresponded to the
second ‘<’ operator of the expression.

3.4.2 Reduction of Arborescences

To simplify the traversal of these arborescences, one can apply an operation called reduction
on them, which minimises their size, while preserving their semantics.

Definition 3.4 (Ordered Arborescence Reduction). Let T< = (V, E,R) be an ordered
arborescence. The reduction operation can be applied to any vertex v € V, 6(v) # t, such
that there exists v; € childs(v) for which 6(v) = 0(v;). In such a case, the reduction
operation performs the following changes:
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Figure 3.2: Original Arborescences Generated from the Constraints of the Running Exam-
ple
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— For all vj € childs(v) such that j > i, j < j + |childs(v;)| — 1 (right shifting of
the indices to make room for the new nodes);

— V=V \{w} (removal of the no longer useful node);

— For all vy, € childs(v;), k < k + i (update of the old children of v;’s indices);

— E=FE\{v — u}\ U {vi = w} U U {v = v} (switching of the

v Echilds(v;) v Echilds(v;)

edges).

An ordered arborescence T, = (V', E', R) obtained by applying the aforementioned reduction
is said to be reduced if and only if for all v € V', for all v' € childs(v), 6(v) # 0(vV'),
and partially reduced if TZ is not reduced and is not a binary directed arborescence. The

degree of reduction of T, is defined as deg(T%) = V)=V

Proposition 3.1 (Semantics Preservation). Let T< = (V, E, R) be an ordered arborescence,
and let T, = (V',E',R) be the reduced version of T<. We state that T< and T', are
semantically equivalent, in the sense that the expressions corresponding to T< and T are
strictly identical. -

Proof. Let us consider a binary directed arborescence T, and let 772 be a partially reduced
version of T of reduction degree n. Let us reason by structural induction on the degree
of reduction of the arborescence, and with the hypothesis that 7% and 17 are semantically
equivalent. We will show that the partially reduced version of T of reduction degree n+1,
namely T;‘“, is semantically equivalent to 7%, and thus to 7.

— DBase case: The empty ordered arborescence Tg and its reduced version T%o are triv-
ially semantically equivalent.

— Induction: Let us consider without loss of generality that TZ corresponds to the
arborescence shown in Figure 3.3(a), and T;“Ll to the arborescence shown in Fig-
ure 3.3(b). T7% has the following properties:

(1) Vi € [1.m], T,, = Ts, N Ts, = T2 (by transitivity of the partial order
relationship);

(2) Vie[l.n—1], Ts, 2 Ts,,,;

(3) Vi € [0..m — 1], T; = Tiyq;

4) Viem+2..2—1], T; < Tiy;

(5) Vi e [l...z], O(parent(T;)) = ‘<’;

(6) Vi € [1...n], O(parent(Ts,)) = ‘<.

We show easily that the same properties still hold in 7T’ ;”rl:

(

—_
~— — — —

remained true thanks to the indices shift;
(2) remained true thanks to the indices shift;
(3) remained true trivially;

(

4) remained true thanks to the indices shift;
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(b) Ordered Arborescence of Reduction Degree n + 1

Figure 3.3: Ordered Arborescences with Different Reduction Degree

(5) remained true trivially;
(6) remained true trivially.

Thus, Tg“ is semantically equivalent to 7%, and, by induction hypothesis, to T%.
]
Ezxample. Figure 3.4 shows the result of applying the reduction operation on the 10 original

arborescences. As the reader can see, the root node of arborescence 1 now has 3 successors:
StFMS, DNFR, and a ‘,” node.

3.4.3 Useful Operators and Sets

Finally, we define the set of (explicit) loops of the process, along with two operators
returning respectively the mutually exclusive tasks of a given task and the parallel tasks
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@) 3 (<)
CHONO
ONO
) 6)

Figure 3.4: Reduced Versions of the Arborescences Shown in Figure 3.2
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of a given task.
Definition 3.5 ((Explicit) Loops Set). Let Expr be a set of expressions. The set of explicit
loops of Expr is defined as

def

Loops = [ J {(v1,...,v,) € tasks(e) | e = (¢')x}.

e€Expr

Definition 3.6 (Mutual Exclusions Operator). Let St . be a set of ordered arborescences
representing a set of erpressions Expr. For all T< = (V, E, R) € Sr_, for allv € V such

that 0(v) = @, we define the mutual exclusions operator as

mutex(v) = U " eV | 0(v) = @ A m(v,v')}

T/, =(V',E',R")EST
where

m(v,v") < " e V' (") = @, vy, v9 € childs(v”), vy # va, | v € T<(v1) AV € Tx(vg).

Definition 3.7 (Parallel Operator). Let St_ be a set of ordered arborescences representing

a set of expressions Expr. For allT< = (V, E, R) € St_, for allv € V such that 0(v) = @,
we define the parallel operator as

par0) 2 J  { eV |00)=(t) A p(v,0)}

TL=(V',E/\R)€ST
where

p(v,v") & F" e V' (") = @, Ju1,v9 € childs(v”), v1 # ve, | v € T<(v1) AV € T<(vg).

3.5 Construction of a Graph handling Sequential
Constraints

The first computational step of this approach consists in representing the sequential con-
straints appearing in the expressions of Expr on a graph. By definition, given a graph
G = (V, E, ¥), anode v; € V that is connected to another node vy € V such that
v1 — vy € E models a sequential constraint between these two nodes, as v; has to be
executed before vy. This sequential constraint matches exactly the behaviour of the ‘<’
operator. Thus, by considering all the expressions containing this ‘<’ operator, one can
build a graph G = (V, E, 3) handling all the sequential constraints, named Cons;. To
do so, the construction is based on an analysis of the arborescences corresponding to the
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expressions. However, this analysis must be done carefully in order to avoid inserting too
much information (i.e., too many edges), or too few, to the graph.

3.5.1 Simple Construction of the Graph

Considering the set of arborescences St corresponding to the expressions Expr, a (simple)
way to generate a graph that represents its sequential constraints is to traverse each ar-
borescence in a depth-first way, and create an edge between each task belonging to the
subtree of a sequential vertex, and each task belonging to the immediately next subtree of

this sequential vertex. More formally, we can create a graph G = (V, E, ¥) where:
— V= U U U tasks(T<(v.));
T:(VT,ET,RT)EST veVr ’UCEChildS(U)
0(1}):4<7
— E= U U U U U {vi— v}
T=(Vr,Er,Rr)EST 9(U§Y?<’ 1€[0...|childs(v)|—1] v1E€T; v2€T; 41

where T; = tasks(7T<(childs(v)[i]));
L)

However, this simple construction may generate unnecessary, or, in the worst case, incorrect
edges.

Example. Considering the expressions given in Section 3.2, this simple method would gen-
erate the graph shown in Figure 3.5. This method generates several unnecessary and/or
incorrect edges, corresponding to the red dashed edges of the graph. For instance, due to
the structure of the tree representing expression (7), task BCO will be connected to both
tasks F'SDP and CFLR. However, the connection to task CFLR is unnecessary, because
task FSDP already precedes task CFLR, and even wrong, as the description states that
“This phase leads either to a BugCaseOpening (BCO), or to ReleaseFeature (RF) if no bug
was found. If a bug case is opened, three different operations may start: either the first
support level initiates a FirstStageDebugPhase (FSDP), which eventually leads to Closing-
FirstLevelRequest (CFLR) [...]”. Thus, task BCO should not be able to reach task CFLR
before performing task FSDP.

3.5.2 Transitive Reduction of the Graph

To avoid such incorrect connections, a solution could be to reduce the graph G by using
classical transitive reduction algorithms [AGU72].

Definition 3.8 (Transitive Reduction of a Graph). Let G = (V, E, X) be a graph. A
transitive reduction of G is a graph G' = (V, E', %) such that

E'={e=v—=vecE|He=v—v,e1=01 = vy..,en =0, = 0) € E}

Said differently, G' only contains the longest paths connecting any two nodes of G.
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Figure 3.6: Transitively Reduced Version of the Graph Shown in Figure 3.5

The transitive reduction of G, performed in a breadth-first way, generates a graph G’
containing less edges than G. Moreover, it is unlikely to contain the aforementioned un-
necessary and/or incorrect edges. However, the transitive reduction may remove transitions
considered as unnecessary in the sense of Definition 3.8, although being meaningful and
mandatory in our case. Such bad removals are even more frequent in cyclic graphs, where
several paths belonging to the cycle will be considered as useless and thus removed by the
transitive reduction. Thus, transitively reducing G is not a good option in the context of
our process generation.

Ezxample. For instance, let us consider Figure 3.6, which corresponds to the transitive
reduction of the graph given in Figure 3.5. As one can see, several flows have disappeared
in this new version (they are materialised by the gray dotted lines in the figure). Notably,
there is no longer a transition connecting nodes DP and RF| due to the fact that the path
p= DP — BCO — TSDP — CTLR — RF € Pg, and that |p| > |DP — RF|. However,
this transition was meaningful in our context, as expression (6) depicts the fact that, after
performing task DP, one can perform either task BCO or task RF. Thus, the transitive
reduction of the graph is not a valid representation of the sequential constraints given in
the expressions.
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Figure 3.7: Graph Representing the Strong Sequential Constraints of Expr

3.5.3 Smart Construction of the Graph

To generate a graph compliant with the expressions returned by GPT, our proposal consists
in keeping only the strong sequential constraints given in the expressions. These constraints
depict mandatory edges of the graph that order vertices which would not be in any sequen-
tial order without them. The extraction of such constraints is done by Algorithm 1, which
traverses the arborescences corresponding to the expressions in a depth-first way, and, each
time it finds a sequential node, creates new strong sequential constraints consisting of pairs
containing the rightmost tasks of the i*" subtree of the sequential node, and the leftmost
tasks of the i + 1*" subtree of the sequential node. These strong sequential constraints are
then used to build the graph G, in a similar manner to that presented in Section 3.5.1.

Ezample. The graph generated from the (strong) sequential constraints extracted by Al-
gorithm 1 from the arborescences representing the expressions Expr is shown in Figure 3.7.
As the reader can see, it contains less edges than the one generated naturally, but more
than the transitively reduced one, and preserves the meaning of the expressions belonging
to Expr. For instance, after performing task DP, one can either perform task BCO or task
RF, as required by expression (6).

3.5.4 Compliance with the BPMN Standard

By construction, G only contains tasks, as its nodes correspond to the tasks belonging to
the expressions Expr. Consequently, it may be the case that some tasks ¢t € V' have several
children or several parents. However, this is a bad practice in BPMN, where the control-
flow must be explicit. Thus, exclusive split/merge gateways are inserted to the graph, in
order to control its execution flow. As G is now really close to a BPMN process (it only
lacks initial /end events), it is enriched with such events to make it a real BPMN process.
The initial event is placed before the initial nodes of G, and the end event(s) after its end
nodes. Depending on G’s structure, the initial nodes are either the nodes of G having no
parent nodes, or, if no such nodes exist, the nodes of G being the furthest from the end
nodes, or, if G has no end nodes, the first node of the first expression returned by GPT.



3.5. Construction of a Graph handling Sequential Constraints 51

Algorithm 1 Algorithm for Extracting Strong Sequential Constraints
Inputs: S7 (Set of Arborescences Corresponding to Expr)
Output: S (Set of Strong Sequential Constraints)
1: Sc 0
2: for T< € Sy do
3: MANAGETREE(root(7%), S<)
end for

b

. procedure MANAGETREE(v, S.)
if (v) = ‘<’ then > Find sequential nodes
for i € [0...|childs(v)| — 1] do
v; < childs(v)[i]; v;41 ¢ childs(v)[i + 1]

10: T <0

11: GETSIDEMOSTTASKSOF (7% (v;), —, 7)

12: GETSIDEMOSTTASKSOF (T<(vit1), <, 1)

13:

14: for € ? do > Iterate over i child’s rightmost tasks
15: for & € ? do > Iterate over i + 1% child’s leftmost tasks
16: Sc+— S U {(7> < ?)} > Add strong sequential constraint
17: end for

18: end for

19: end for

20: end if

21:

22: for v. € childs(v) do

23: MANAGETREE(v., S<)

24: end for

25: end procedure

26:

27: procedure GETSIDEMOSTTASKSOF (v, side, T')
28: if f(v) =t then

29: T+ T U{v}

30: else if 0(v) = ‘<’ then

31 if side = — then > Recursive call on the rightmost child
32: GETSIDEMOSTTASKSOF(childs(v)[|childs(v) — 1], side, T')

33: else > Recursive call on the leftmost child
34: GETSIDEMOSTTASKSOF(childs(v)[0], side, T)

35: end if

36: else

37: for v, € childs(v) do

38: GETSIDEMOSTTASKSOF (v, side, T')

39: end for

40: end if
41: end procedure
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Figure 3.8: BPMN Process Obtained After Adding Exclusive Gateways and Start/End
Events to the Graph Shown in Figure 3.7

Definition 3.9 (Initial Nodes). Let G = (V, E, X) be a graph, T be its set of end nodes,
and Expr be a list of expressions. The initial nodes of G are a set of nodes I C V' such
that:

— I ={v eV |parents(v) =0}, if |I| #0, else
—I={veV[WeV, ZW )< 3l )l}, if 1] #0, else
teT teT

— I ={v eV |o(v)=o(tasks(Expr[0])[0])}, otherwise.

Similarly, the end nodes of G are either the nodes of G having no children nodes, or, if no
such nodes exist, the nodes of G being the furthest from the initial nodes.

Definition 3.10 (End Nodes). Let G = (V, E, X) be a graph, and I be its set of initial
nodes. The end nodes of G are a set of nodes

T={veV|childs(v) =0} U {v eV |c(v)Ac(v)}
where
c1(v) & P €V, childs(v') =0, s.t. v —* 0

and

ca(v) &V eV, Y 16V < Y NIGv)]

i€l el

Once done, the graph G is fully compliant with the BPMN standard (i.e., it is a valid
BPMN process). However, it does not handle all the expressions of Expr yet.
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Example. Let us consider the expressions of the running example. The BPMN process
G = (V, E, ¥) obtained after converting the sequential constraints e. € Expr to a
graph, and inserting exclusive gateways and start/end events to it is shown in Figure 3.8.
As an example, one can see that task CNFB is a successor of task VI, meaning that task
CNFB will be executed after task VI, as required by expression (2).

3.6 Management of Mutual Exclusions

The BPMN process G contains all the sequential constraints relating the tasks of the
process-to-be. The next step of the generation consists in handling the mutual exclusions
that may have been requested by the user. A mutual exclusion or choice between two tasks
represents the impossibility for two tasks to be executed in the same run of a process. On
a graph-based representation of a BPMN process, it can be characterised by the absence of
path containing such two tasks. This notion, being the strongest form of mutual exclusion,
is called strong mutual exclusion.

Definition 3.11 (Strong Mutual Exclusion). Let G = (V, E, X) be a BPMN process,
and P be its set of paths. Two tasks t1,ty € V are said to be strongly mutually exclusive
if and only if there does not exist p € P2 such that t; € p and ty € p. This is written

|s ta.
Although matching exactly the spirit of the mutual exclusion, this definition is quite re-
strictive, in particular when dealing with cyclic BPMN processes. Indeed, cyclic graphs
necessarily induce cyclic paths. In its shortest form, a cyclic path pc, € P2 can be written
(UBys s UBps UNy s o5 UNp s V01  ---V0, s UNy 5 o3 UNpys VA 5 ---5 VA, ) Where:

— the (vp,, ..., vB,,) are the nodes reached before the cycle;

— the (v, ..., vy, ) are the necessarily executed nodes of the cycle;
— the (vo,, --- ) are the optional nodes of the cycle;
— the (va,,...,va,) are the nodes reached after the cycle.

From this decomposition, one can see that, after executing vy, , either vp, or v, is exe-
cuted, which symbolises a choice between these two nodes. However, both of them belong
to pcy, thus, by definition, they are not strongly mutually exclusive. To permit such be-
haviours, we introduce a more permissive form of mutual exclusion based on the set of
acyclic paths of G, called weak mutual exclusion. An acyclic path is either a path of G that
does not contain any repetition of its nodes, or a cyclic path of G that has been truncated
so that it contains no repetition of its nodes.

Definition 3.12 (Acyclic Paths Set). Let G = (V, E, ) be a BPMN process, and let
P be its set of paths. We define the set of acyclic paths of G as
0 def

={pyePet U U {poyl: vil | eilpeys ve) A ealpy, vr)}

pQ:(vl7U27--~7UL7~~-7'Un)E7Dg
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where
ci(pey,vr) € Fi,j € [1..index(vy)], i # j, s.it. v; = v;
and
62(pQ7UL) = pQ [indeX(UL) + 1] - pQ [: UL]

Definition 3.13 (Weak Mutual Exclusion). Let G = (V, E, X) be a BPMN process, and
P be its set of acyclic paths. Two tasks ty,t2 € V are said to be weakly mutually exclusive
if there does not exist p € 73?; such that t; € p and ty € p. This is written t; |w to.

Even though being more permissive than its sibling, the weak mutual exclusion may still be
too restrictive when dealing with constraints expressed in natural language. For instance,
according to expression (6) of the running example, the tasks BCO and RF are supposed
to be mutually exclusive. However, in Figure 3.8, the acyclic path @ — StFMS —

@Ml — DNFR — ®51 —~ VE — ®M2 — STD — @Ms — FD — ®M4 -

DP — @SS — BCO — ®S4 — SSDP — CSLR — @Sﬁ — ®M5 — RF — ®S8 —
ShFMS — @ contains both tasks BCO and RF, thus preventing them from being weakly

mutually exclusive. Nonetheless, after having executed task DP, one has to make a choice
between executing task BCO or executing task RF, which sticks exactly to the meaning
of expression (6). Thus, in the context of expression (6), tasks BCO and RF can be
considered mutually exclusive. This notion, being the weakest of all, is called contezrt-wise
(weak) mutual exclusion.

Definition 3.14 (Context-Wise (Weak) Mutual Exclusion). Let G = (V, E, X) be a
BPMN process, and let e € Expr be any expression such that t, € mutex(ty). Tasks t; and
ty are said to be context-wise (weakly) mutually exclusive if and only if they are weakly
mutually exclusive in the graph G [asks(e). This is written t; low t;.

Based on these definitions, one can now add to G the mutually exclusive tasks not already
belonging to it. The tasks not already belonging to G are V = | {v € tasks(T) |v ¢ G}.
TeST

To perform the insertion, we must consider the set of mutually exclusive tasks of each task
t € V, that is mutex(t). For brevity, it will be abbreviated M;. Let us then consider
two possible cases: either (i) the set only contains tasks that do not belong to G, i.e.,
M, NV =10, or (ii) the set contains at least one task belonging to G, i.e., M; N V # ().

For case (i), the solution is rather simple: ¢ and each task of M, are added to the graph, as
children of the start event?. By doing so, P& now contains |M;| + 1 new paths, containing
each a single task of M;, or t. By construction, there is no path of G containing both ¢
and a task of M;. Thus, they are mutually exclusive, as desired. Moreover, as the tasks of
M, are not constrained with regards to the other tasks of the graph, they will end up in
parallel of the rest of the graph in the final BPMN process (see Section 3.8), thus avoiding
the creation of unspecified mutual exclusions.

4An exclusive split gateway @S is also added if needed.
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For case (ii), the solution is slightly more complex. Let us break M; into two sets: the
set of tasks already belonging to G called M;, and the set of tasks not belonging to G
called M,. We have that M, UM, = M,. A simple—yet naive—way of inserting ¢ and the
tasks belonging to M; into G would be to do just as in case (i), that is, adding them to G
as children of the start event. However, unlike in case (i), ¢ is, by definition, constrained
with regards to some tasks of the graph (the Mt). Consequently, inserting these tasks as
performed in case (i) would create many unspecified mutual exclusions. To avoid this, the
proposed method consists in connecting ¢ and the tasks belonging to M, to a particular node
of G while preserving the existing mutual exclusions and limiting the number of unspecified
mutual exclusions. This particular node is one of the closest inevitable common ancestors
of the tasks belonging to M;, and of the mutually exclusive tasks of the tasks of M, already
belonging to G.

Definition 3.15 (Closest Inevitable Common Ancestors). Let G = (V, E, ¥) be a BPMN
process. For all vy, ...,v, € V, the closest inevitable common ancestors of (vy,...,v,) are
all the nodes vo € V' such that:

— Foralli € [1..n], for allp € P%, v; € p = (vo € p A index(ve) < index(v;))
(inevitability, commonality, ancestrality);

— For all py, = (ve, Vb, ..., Um) € Pa(ve), there does not exist j € [b...m] such that v,
is a common ancestor of (vy,...,v,) (closeness).

Among the eventual multiple closest inevitable common ancestors, one of them is selected,
and t and the tasks belonging to M, are inserted to G as children of this ancestor®. As
desired, task t is now mutually exclusive of the tasks of M;.

Proposition 3.2 (Validity of the Closest Inevitable Common Ancestors). Let
G = (V, E, %) be a BPMN process, let M, be the set of mutually exclusive tasks of
a taskt € VS, let M, = M, NV, let M, = M, \ Mt,Ncmd let Vo be the set of closest

inevitable common ancestors of the tasks belonging to My U | U . We state that
t€M; mEmutex(t)
meqG

inserting t and the tasks M, into G as children of any ve € Vo make t weakly mutually
exclusive of the tasks M;.

Proof. Let G = (V, E, %) be a BPMN process, let M; be the set of mutually exclusive
tasks of a task t € V7, let M, = M, NV, let M, = M, \ Mlt7~ and let Vo be the set of

closest inevitable common ancestors of the tasks belonging to M; U U U . Wewil
teM; mEmutex(t)
meG

show that, for all vo € Vi, adding ¢t and the tasks of M, as children of v, make ¢t weakly
mutually exclusive of the tasks belonging to M;.

5An exclusive split gateway @ is also added if needed.

60ne could take t ¢ V without changing the validity of the statement.
"One could take t ¢ V without changing the validity of the statement.
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Adding t and the tasks M; as children of v creates a BPMN process G' = (V' £/, YY),

where:

— V'=V U M; U {t};
— F'=EFE U U {ve—1t} U {vc—t}
teMy

Y= U U{e@®} U {o(t)}

teM,

Consequently, we have that

Per=Peu U UAGL vl ) [veepy U U AL vel,t) | ve € p}

teM; pePy, peP?,

By construction, thereisno p € PG, containing both ¢ and a task t € M,. Moreover, by defi-
nition of v¢, we have that for all £ € M,, for allp € PG/ tep=p=(vy,.. , Ve ety 2.
Thus, by construction of G’, there is no p € PG, containing both ¢ and a task t € M,. Con-
sequently, t is weakly mutually exclusive of all £ € M,, and of all ¢ € M,, which corresponds
to all the tasks of M;. O

Remark 3.2. [t is worth mentioning that considering the closest inevitable common an-

cestor of (the barbarian expression) M, U | U is mandatory in order to preserve
te My memutex(t)
meG

the mutual exclusions stated in Expr. Indeed, adding the tasks of M, as children of the
closest inevitable common ancestor of M, only could potentially prevent a task t € M, from
being mutually exclusive of one of its mutually exclusive tasks, in the case where such a
task is a predecessor of the closest inevitable common ancestor of M.

These new connections, although having the benefit of adding the desired mutual exclusions
to G, may have generated unspecified mutual exclusions. Indeed, t and the tasks £ € M,

are connected only to the closest inevitable common ancestor of M,U U U , making
teM; memutex(t)
meG

them mutually exclusive of a possibly large part of the graph. To reduce the number of
unspecified mutual exclusions, an attempt is made to connect t and the tasks ¢ € M, to the
children of the tasks belonging to M,. When a child can be connected, it becomes a child
of t, and of each task £ € M,®. If a child cannot be connected without discarding a desired
mutual exclusion, a new attempt is made on the children of this child, and so on until
reaching the end of the graph. By doing so, the new mutual exclusions are limited to the
tasks appearing between the selected closest inevitable common ancestor and the connected
children. Still, some of these tasks may not belong to M,, thus leading to unspecified—yet
unavoidable—mutual exclusions. G now satisfies a new set of constraints Cons, which
contains the mutual exclusions.

8 An exclusive split gateway @S is also added if needed.
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Figure 3.9: BPMN Process Resulting from the Addition of Task LCDF' as Child of @M
1

Ezxample. Let us consider the BPMN process G in Figure 3.8. Five tasks have a set of
mutually exclusive tasks containing tasks that do not appear yet in G: DNFR, VI, VE,
CNFB and STD. Indeed, according to expression (4) of the running example, they are all
mutually exclusive of task LCDF, which does not belong to G. To add this task to G,
the first step consists in finding the closest inevitable common ancestors of the other tasks
DNFR, VI, VE, CNFB and STD. These tasks have a single closest inevitable common
ancestor: the exclusive merge gateway M;. Task LCDF is then added as a child of this
merge gateway, as highlighted in red in Figure 3.9°.

The second part of the insertion consists in trying to connect LCDF to the children of
DNFR, VI, VE, CNFB and STD, in order to reduce the number of unspecified mutual
exclusions. The only eligible child of DNFR, VI, VE, CNFB and STD is the exclusive
merge gateway Ms, as the others are VI, VE, CNFB, STD, and the exclusive split and
merge gateways Sp, So and M, which must be mutually exclusive of LCDF. LCDF is thus
connected to M3, as highlighted in red in Figure 3.10. As there is no path containing both
DNFR and LCDF, nor VI and LCDF, nor VE and LCDF, nor CNFB and LCDF, nor
STD and LCDF, Mj is a valid child node. As there is no other eligible child node, the
computation stops here, with LCDF having been added to . It is worth noting that, in
this case, the insertion did not add any unspecified mutual exclusion to the BPMN process.

9An exclusive split gateway @S is added between these two nodes to preserve the BPMN semantics.
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Figure 3.10: BPMN Process Resulting from the Addition of Task LCDF as Parent of @M
3

3.7 Management of Explicit Loops

The explicit loops—by opposition to the implicit ones induced by cyclic sequential
constraints—are the loops belonging to the set of loops called Loops. To appear in G,
each loop L = (vy,...,v,) € Loops must form a strongly connected component in G. De-
pending on the composition of L, the insertion is performed differently. We can distinguish
between two major cases: either (i) none of the nodes in L belong to G, i.e., LNV ={ or
(ii) at least one node in L belongs to G, i.e., LNV # (). By definition, the nodes v € L\ V
cannot be mutually exclusive of any other node, otherwise they would have been added
to GG in the previous step, nor sequentially constrained to any other node, otherwise they
would already belong to G. Thus, they are not constrained with regards to any other node
of G.

In case (i), the approach simply consists in connecting all the v € L to a parallel split
gateway <-|>S and to a parallel merge gateway <-|>M. This construct is then put inside

a loop, that is, between an exclusive merge gateway @M and an exclusive split gateway

@s which is connected to the exclusive merge gateway. Once done, the exclusive merge

gateway is inserted in G as child of the initial event!?. By doing so, the loop nodes now
form a strongly connected component that belongs to GG, as desired. More formally, given
that @ (resp. @) is an initial (resp. final) node of G, we have that G3 = (V3, E3, X3),

10 An exclusive split gateway @s is added if needed.
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where:

— Vs =VULU{R & }UT;
— By = B\ {(s) — any(childs((s))} U {®, = X @, — @@ —
@M, @M — any(childs(@))} UE;

— Y3= U {o(v)}

vEV3

where
if |[L| =1
{<-|> @ }  otherwise

- [®, = LIOL L0~ % ) if |L] = 1
E=
{® @ <'|> —>® tu U {@ — v v—><-|> }  otherwise

veL

and

In case (ii), some v € L already belong to GG, while some others do not. However, the loop
nodes belonging to G may be completely disconnected, already connected, or partially
connected, thus no assumption can be made on how to connect them. If they do not
form a strongly connected component yet, they have to be connected to make this strongly
connected component appear in G. This starts by computing all the components of G [y .

These components represent disconnected portions of L that one has to connect to make
the strongly connected component corresponding to L appear in G. However, this must be
done carefully in order not to break any mutual exclusion already handled by . Indeed,
connecting two such components consists in adding new flows to G, which has an impact
on its paths, and thus, potentially, on its mutual exclusions. To ensure that L will be
added to G if it is possible (i.e., if it does not intrinsically break some mutual exclusions),
all permutations of the components of G [y are computed. Each such permutation
represents a possible order in which the components can be connected to the others to
make the loop appear in G. For each such permutation, the n'* component is connected to
the n + 1™ component. This is done by connecting each node of the n'" component having
a O-reachability to the set of nodes of the n + 1'® component ensuring an co-reachability.

Definition 3.16 (n-reachability of a Node). Let G = (V, E, X) be a BPMN process.
For all v € V, the n-reachability of v is the number of nodes that v can reach, i.e.,

n= [ eV\{v} [v="0Y

By convention, if n = |V| —1 (i.e., if v can reach all the nodes of G), v is said to have an
oo-reachability.

This notion can be extended to a set of nodes.
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Definition 3.17 (n-reachability of a Set of Nodes). Let G = (V, E, X) be a BPMN
process. For all {vy,...,v,,} €V, the n-reachability of {vq,...,v} is the number of nodes
that {vy,...,v,} can reach, i.e.,

n=| U {v e V\{vr,..,vm} | v; ="V}

vi€{v1,...,um}

By convention, if n = |V| —m (i.e., if the {vq,...,v} can reach all the nodes of G), the
set {vy,...,vm} s said to have an oco-reachability.

Such a connection ensures that each node of the n'® component can now reach every node
of the n + 1™ component, and also that the n'" and n + 1™ components now form a single
component. If during the connection phase, the n'* component of a permutation cannot
be connected to the n + 1*" component without breaking some existing mutual exclusions,
the permutation is discarded. Once a valid permutation is found, the remaining ones are
discarded. If no valid permutation is found, the explicit loop L is not added to G. Finally,
if some tasks of the loop did not already belong to GG, they are arbitrarily added between
two connected components, using the same method than in case (i). This step results in
G satisfying another set of constraints Conss.

Proposition 3.3 (Validity of the Components Connection). Let G = (V, E, X)
be a BPMN process, let L = (vq,...,v,) € Loops be a loop that should be added to
G, and let {Gy,...,G,} be the set of components of G [pny. We state that for all
i € [l..m — 1], connecting all the {vy,...,v,} € G; having a 0-reachability to the (smallest)
set of {v1,...,v,} € Giy1 ensuring an oo-rechability, and all the {vy,...,v,} € Gy, having a
O-reachability to the (smallest) set of {vy,...,v,} € Gy ensuring an oo-rechability make L
become a strongly connected component in G.

Proof. Let G = (V, E, ) be a BPMN process, let L = (vy,...,v,) € Loops be a loop
that should be added to G, and let {GY, ..., G, } be the set of components of G [r~y. Let
us separate the proof into two parts.

First, let us show that connecting all the nodes of a component having a 0-reachability
to the (smallest) set of nodes having an oo-reachability makes the component become a
strongly connected component. Let {v,,...,v,,} be the set of nodes of G; having a 0-
reachability, and let {v,,...,v.} be its (smallest) set of nodes ensuring an co-reachability.
Adding an edge connecting each v; € {v,,...,v,} to each v; € {v,,...,v,} ensures
that each v; € {v,,...,v,} now has a oo-reachability. Moreover, by definition, each
v & {Vay .o, U} U {vp,...,v.} must have at least a l-reachability (otherwise it would
belong to the {v,, ...,v,,}). Hence, it must be able to reach at least one v; € {vg, ..., U}
However, we know that each v; € {v,,...,v,} now has an oo-reachability. Thus, each
g & {Vay .oy Um} U {vn,...,v,} now has an oo-reachability. As each v € V now has a an
oo-reachability, G is a strongly connected component.

Then, let us show that connecting two components G; and G5 with the same method
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creates another component Gyo. Let {vy,,...,v1,,} be the set of nodes of G; having a
O-reachability, let {v1,,...,v1,} be its (smallest) set of nodes ensuring an co-reachability,
let {vy,, ..., v, } be the set of nodes of Gy having a 0O-reachability, and let {vy,,...,v9.} be
its (smallest) set of nodes ensuring an oco-reachability. Adding an edge connecting each
v; € {v1,,...,v1,,} to each v; € {vs,,...,v9, } ensures that Gy = (V1 U Vs, By U Ey U {v; —
v | v € {vr,, .01, A v € {vg,, ..., 09 }}, 3 U Xg) is a component. Moreover, it also
ensures that the {vy,...,v1,} have an oco-reachability in this component. By construction,
we also have that the {vq,, ..., vq,, } still have a 0-reachability. Thus, we created a component
(12 that contains both G; and G9, and which has the same (smallest) set of co-reachability
nodes than Gy, and the same set of O-reachability nodes than G,.

We showed that for all ¢ € [1...m— 1], connecting each G; to each G, creates a component
G containing all the G;, and whose (smallest) set of co-reachability nodes is the same
than G, while its set of 0-reachability nodes is the same than G,,. Finally, we showed
that connecting this set of O-reachability nodes to the set of oo-reachability nodes makes
Gy a strongly connected component, which is our goal. ]

FExample. Let us consider the explicit loops of the running example Loops. This set
contains a single explicit loop [, containing tasks FSDP, SSDP, TSDP, CFLR, CSLR and
CTLR, as described by expression (9). To manage this loop, the first step consists in
computing the components of G [;. G [; has three components: (G, containing tasks
FSDP and CFLR, G, containing tasks SSDP and CSLR, and G35, containing tasks TSDP
and CTLR. To make [ appear in (G, these three components must be connected. The
possible connection orderings are the following: {G1, Ga, G3}, {G1, G3,Gs}, {Ga, G1,Gs},
{Gy, G3,G1}, {Gs,G1,Gs} and {G3, Gy, G1}. The first permutation means that G; must
be connected to GG, Gy must be connected to GG3, and GG3 must be connected to G;. To
do so, the nodes of G; having a 0-reachability must be connected to the set of nodes of G5
ensuring an oo-reachability. Here, this means that CFLR must be connected to SSDP. By
doing so, F'SDP and SSDP are no longer weakly mutually exclusive. However, they remain
context-wise mutually exclusive, thus the connection is valid. Similarly, connecting G5 and
(G5 consists in connecting CSLR to TSDP, which also breaks the weak mutual exclusion
between SSDP and TSDP, but not their context-wise mutual exclusion. Finally, G3 and
(G, are connected by adding an edge between CTLR and FSDP, which also preserves the
context-wise mutual exclusion between FSDP and TSDP. As the permutation is valid, the
remaining ones are discarded. Figure 3.11 shows the resulting graph, in which tasks FSDP,
SSDP, TSDP, CFLR, CSLR and CTLR are now in a loop containing only them®!.

3.8 Management of Parallelism

At this stage of the BPMN process generation, two operators of the language are still
to be managed: the ‘,” and the ‘&’ operators. The ‘,” operator separates tasks that are

1 To preserve the BPMN semantics, three exclusive merge gateways Mg, M7, and Mg were added to G.
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Figure 3.11: BPMN  Process Resulting from the Addition of the Loop
(FSDP, SSDP, TSDP, CFLR, CSLR, CTLR)x

not constrained to each others, while the ‘&’ operator separates tasks that should be put
in parallel. However, in BPMN, parallelism precisely describes the absence of constraints
between elements, as two parallel elements may end up executing sequentially in any order,
or at the same time. Thus, we decided to manage the ‘,” and the ‘&’ operators the same
way.

In this approach, adding parallelism to the graph consists in replacing the exclusive split
(resp. merge) gateways by parallel split (resp. merge) gateways. However, replacing an
exclusive gateway by a parallel gateway may lead to potentially severe issues if not done
carefully. In BPMN, parallelism can induce two major issues: deadlocks and livelocks.
A deadlock occurs whenever a parallel merge gateway does not (and will not) receive
a sufficient number of tokens to be triggered, that is, one token per incoming flow. This
phenomenon prevents the gateway from merging its incoming tokens, and thus from sending
a token to its outgoing flow. Consequently, the process cannot complete its execution. A
livelock occurs whenever a parallel split gateway can be reached infinitely often by a token
that it sent and which was not merged with its siblings before reaching this parallel split
again. This parallel split thus produces new tokens infinitely often, thus preventing the
process from terminating. Such behaviour happens when there is no node synchronising
all the paths starting from the children of a parallel split gateway that can reach itself.

Definition 3.18 (Paths Synchronisation Node). Let G = (V, E, ) be a BPMN process,
and Pg be its corresponding set of paths. A node v € V is said to synchronise a set of
paths Pr, C Pq if and only if for all p € P,, v € p. Pg may have several synchronisation
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Figure 3.12: Basic Example of (Syntactic) Livelock in BPMN

nodes, which can be computed using the sync(Pf;) operator:

sync(P,) ={veV |VpePg vep}

Definition 3.19 ((Syntactic) Livelock). Let G = (V, E, ) be a BPMN process, and let
v €V be a parallel split gateway. G contains a (syntactic) livelock if:

— Ju. € childs(v) such that v. —* v (v. can reach v);

— v, € V such that:
— vs € sync( U Pa(ve));
vcEchilds(v)
— VD = (U1, .0, Vg, oy V) € U Pa(v.), Ji € [1..n] | v; = v = index(vy) < i.
vecEchilds(v)
(either the paths starting from children of v are not synchronised, or at least one of them
can reach v before reaching v )

Example. Figure 3.12 illustrates this potential issue on a simple BPMN process. As the
reader can see, the parallel split gateway sends a token 71 to B, which reaches the end
event, and another token 7 to A. These two tokens are never merged, and 75 eventually
reaches the parallel split gateway. When it receives 1y, it sends 7{ to B, and 75 to A. As
the parallel split gateway is triggered infinitely often, there is no way for this process to
eventually complete its execution, as it has no possibility to prevent itself from producing
new tokens. Thus, this process contains a livelock.

3.8.1 Insertion of Parallel Gateways

As mentioned earlier, inserting parallel gateways to the graph mostly consists in replacing
some exclusive gateways by parallel ones while avoiding syntactic livelocks. However,
simply switching the type of a gateway is often not sufficient to handle properly all the
possible forms that the process could take. Indeed, a simple exclusive split gateway with n
children tasks could generate almost 2 x (2" — 1) syntactically different BPMN constructs.

Ezample. Let us consider the four mutual exclusion constraints A | B, A | C, A | D, and
C | D. Before starting to insert parallelism in it, the BPMN subprocess corresponding
to these four constraints would be the one shown in Figure 3.13(a). However, if one
wants to parallelise the tasks that can be parallelised without breaking any of the four
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(a) Original BPMN Sub-Process (b) Most Parallel BPMN Sub-Process

Figure 3.13: Example of Parallel Tasks Combination

aforementioned mutual exclusions, while adding as much parallelism as (s)he can, (s)he
would build the BPMN sub-process displayed in Figure 3.13(b). It is as parallelised as
possible, as the only non-parallel tasks are the ones that should be mutually exclusive. For
instance, according to the given constraints, tasks B and C are not mutually exclusive,
although they are in Figure 3.13(a). However, after the insertion of parallel gateways, they
end up in parallel, as they should be.

Inserting Parallel Splits

The generation of parallel structures, such as the one presented above, relies on combina-
torics to build all the possible such structures given a set of tasks. This is ensured by a
function n : V" — W, assuming that W is the set of all existing workflows. Function n
is recursively defined and its return value is, for clarity, written in the form of expressions
compliant with the language defined in Section 3.2.

Definition 3.20 (Generation of Parallel Split Structures). Let G = (V, E, X) be a BPMN
process, and let g € V' be an exclusive split gateway having n children tasks (ty,...,t,) € V
whose parallel structures have to be generated. Function n is (partially) defined as:

{t:} if |{t1, ota =1
{tr, - ta}) |t D} U {n({t o ta}) & ([l ]} else

where {tl,/\n} = any(Q{tl’ wtnt 1) and {ty, ..ty = {t1, ... ta} \ {tﬁn}

Example. Given 3 tasks A, B, and C, the n function generates 12 syntactically different
BPMN subprocesses, that are presented in Figure 3.14.

77<{t17 oo tn}) = {

Applying this operation generates several syntactically different graphs. These graphs
are built in a BPMN-like fashion, which allows the appliance of the minimisation rules
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described in Definition 2.24. The application of these rules returns a set of graphs that are
now semantically different. For each of them, a copy of G is made, in which the exclusive
split from which these graphs were produced is replaced by the current generated graph.
Among all these copies, only the ones not creating any syntactic livelock, nor violating
any desired mutual exclusion, are kept, while the others are discarded. They are called
syntactically compliant processes.

Definition 3.21 (Syntactically Compliant BPMN Process). Let G = (V, E, X) be
a BPMN process. G is said to be syntactically compliant if for all v € V' such that
O(v) = @5’ v s syntactically compliant.

Remark 3.3. A BPMN process containing no parallel split gateway is trivially considered
as syntactically compliant.

Definition 3.22 (Syntactically Compliant Parallel Split Gateway). Let G = (V, E, )
be a graph. For allv € V' such that 0(v) = @S, v is said to be syntactically compliant if
and only if:

— v does not create any syntactic livelock (i.e., it complies with Definition 3.19);
— v does not break any desired mutual exclusion, i.e., Yvy,v9 € childs(v), v1 # Vg :

(th € Tl, ﬂtg S TQ | tz € mutex(tl)) A (Vt2 € TQ, ﬂtl € T1 | tl € mutex(tQ))
where Vi € {1,2}, T, = U tasks(p[: sync(Pg(vi) U Pg(v2))])

PEPG (v;)

Inserting Parallel Merges

Each copy of G now contains its parallel split gateways, but no parallel merge gateways yet.
The insertion of these parallel merge gateways, essential to prevent deadlocks and livelocks
in the process, is done in two sequential steps. First, the parallel split gateways previously
added are analysed to check whether they require a synchronisation node to avoid creating
syntactic livelocks in the process. If this is the case, a parallel merge gateway is inserted
before this synchronisation node, and becomes the new synchronisation node of the parallel
split. This ensures that the parallel split gateway will not create syntactic livelocks in the
final process. Next, the remaining exclusive merge gateways of the BPMN process are
checked to see whether their closest common ancestor is a parallel split. If this is the case,
a parallel version of this gateway may not suffer from deadlocks, so it is switched to a
parallel gateway.

3.8.2 Detection of Deadlocks/Livelocks and Parallelism Removal

Our previous modifications of the copies of GG introduced parallelism in them. Although
performing this parallelisation phase carefully, it is rather complex to ensure the absence of
deadlocks or livelocks at design time by performing only a syntactic analysis of the process.
However, such behaviours can be easily detected when executing the BPMN process.
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Definition 3.23 ((Execution) Deadlock). Let G = (V, E, ¥) be a BPMN process. G
contains a(n execution) deadlock whenever there exists C € H(G) such that:

— C =push(C);
— (' is not a final configuration.

Definition 3.24 ((Execution) Livelock). Let G = (V, E, X) be a BPMN process. G
contains a(n execution) livelock whenever there ezxist C,C" € H(G) such that:

—Vnedl, Cnj=0&C"nl=0
— VYn e C, C'In] > C[n];
— dn € C such that C'[n] > C|n].

Detection of Deadlocks/Livelocks

The detection of such configurations is based on simulation of the given BPMN process.
However, the simulation that we use to detect such erroneous configurations slightly differs
from the one presented in Section 2.4.3. Indeed, in Section 2.4.3, we perform one simulation
of the process, representing one of its possible executions. Here, we want to ensure that
there is no possible execution of the process that reaches a deadlock or a livelock. In our
context, there is a single type of node possibly making the execution of a process differ
from another: the exclusive split gateway. Indeed, when a token reaches this node, it is
sent to any of its children nodes, non-deterministically. To ensure that the detection takes
into account all the possible configurations of the process, the solution that we opted for
consists in duplicating the current configuration every time a token must be sent away
from an exclusive split gateway. The simulation no longer returns a single history H, but
a set of histories Sy = {H1, ..., Hn}, each of which corresponds to a possible execution of
the process. However, this modification introduces a major issue: a simulation may no
longer terminate. Originally, simulating a correct process (i.e., without deadlock/livelock)
necessarily terminates, due to the semantics of the different BPMN operators, and to the
fact that the children of an exclusive split gateway are probabilistically chosen. From now
on, as all the children of an exclusive split gateway receive a token from their parent, certain
configurations may remain in a state where, for instance, a token is continuously circulating
through a strongly connected component of the process. To avoid such situations, the
simulation now makes use of a fixed point analysis to terminate.

Definition 3.25 (Fixed Point). Let G = (V, E, ) be a BPMN process. H(G) contains
a fixed point whenever there exist C,C" € H(G) such that:

— VYn e C, C[n] =C"[n];
— VYo' e ', Cln'] =C'[n].

When a fixed point is reached, the simulation stops generating all the possible configura-
tions, and is asked to terminate. This is ensured by a mechanism that forces the simulator
to transmit the tokens of an exclusive split gateway only to its child that is the closest
to an end event. When the simulation has terminated, the set of histories S is analysed
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to verify whether there exists an history H € Sy containing a deadlock or a livelock. If
not, the BPMN process remains as is. Otherwise, some of its parallel elements have to be
removed.

Parallelism Removal

If the deadlock/livelock detector found a deadlock or a livelock in the current BPMN
process, this process has to be modified. Although being rather simple to detect dead-
locks/livelocks in processes, it is more difficult to identify their sources. For instance, a
node holding a token in a deadlock configuration may not be the source of that deadlock.
The simplest solution that we found to identify the source of such errors so far consists in
removing step by step the parallel gateways of the BPMN process, until reaching a graph
containing no deadlock/livelock. The removal is made in a simple way: each parallel gate-
way of the process is replaced by an exclusive one, which leads to the generation of several
new BPMN processes, each of them containing one less parallel gateway. If the removed
gateway is a parallel merge gateway, and if this gateway is the mandatory synchronisation
node of a parallel split gateway, this parallel split gateway is also replaced by an exclusive
split gateway to avoid syntactic livelocks. Among all the deadlock/livelock-free generated
BPMN processes, the one with the largest number of parallel tasks is elected as best candi-
date. This procedure is summarised in Algorithm 2. This final BPMN process now satisfies
a new set of constraints Cons,.

Ezxample. Let us consider the current version of the BPMN process, that is, the one
shown in Figure 3.11. It contains 9 exclusive split gateways, that are candidates for being
replaced by parallel split gateways. Among these exclusive split gateways, only two are
valid candidates: S; and S;. Indeed, the 7 remaining gateways would all generate an
incorrect behaviour if switched to parallel:

— Gateway S35 would not satisfy expression (6) of the running example anymore;
— Gateways Sy, S5, Sg, S7, and Sg would create a syntactic livelock;

— Gateway Sy would break the mutual exclusion between, for instance, task DNFR and
task LODF' (expression (4)).

Thus, S7 and Sy become parallel split gateways. To avoid any syntactic livelock, M3 must
become a parallel merge gateway. However, simply switching the type of M3 to parallel
would create a deadlock. Indeed, as the gateway Sy is an exclusive split gateway, M3 would
receive a token either from task DNFR, or from task LCDF, but not from both, thus M;3
would never be able to merge its incoming tokens, preventing it from sending a token to
task F'D. To avoid this situation, Mj3 is partially switched to a parallel gateway, resulting
in the creation of the exclusive merge gateway Mg, connected to task LODF and Mj. This
prevents a deadlock from occurring. Finally, M, is a valid candidate for being replaced
by a parallel merge gateway, as the closest common ancestor of its parents is the parallel
split gateway S;. Thus, its type is switched to parallel. This process is then simulated in
order to verify whether it can create deadlocks and/or livelocks. As it does not create any,
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Algorithm 2 Algorithm for Generating the Most Parallel Process

Inputs: G = (V, E, ¥) (BPMN Process), Mg (Split with Mandatory Merges)
Output: Gp (Most Parallel BPMN Process)

[ T e T e S = S = Y
AT e R

O I R O R R S S
A T i s

Snext A H
Gp +— 1
if “"HASDEADLOCKORLIVELOCK(G) then
Gp < GETMOSTPARALLELPROCESSBETWEEN(G, Gp)
end if
for v € V do
if 0(v) = &>, then
G’ + coprY(G) where §(v) = ®s > o is a <'|>s = v becomes a @S
Snezt — Sne:z:t U G/]

else if 0(v @ then
if Mg[v] # L then > v is a mandatory merge = v and Mg[v] become @
G+ copy(G) where 6(v) = <X>, and (Ms[v]) = K>
else > v is not a mandatory merge = only v becomes a ®
! —
G’ <+ coprY(G) where 0(v) = @M
end if
Snezt < Snext U [G/]
end if
: end for
. for G’ € S0 do
Gp < GETMOSTPARALLELPROCESSBETWEEN(THIS(G'), Gp)
: end for
: return Gp
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Figure 3.15: BPMN Process Resulting from the Parallelisation Phase

and is the most parallel BPMN process generated, it is kept as best candidate, and the
generation of the BPMN process terminates.

3.9 Constraints Preservation

Beyond creating a BPMN process G compliant by construction with the constraints de-
scribed in the original expressions, this approach also preserves the constraints satisfied by
G at each step of its construction.

Theorem 3.1. (Constraints Preservation) Let G = (V, E, X)) be the BPMN process built
from the sequential constraints Cons; and enriched with exclusive gateways and start/end
events, and let Consy, Conss, and Cons; be the sets of constraints respectively satisfied by
G after steps 2 (Section 3.6), 8 (Section 3.7), and 4 (Section 3.8) of this approach. We
state that (0 C)Cons; C Consy C Consg C Consy.

Proof (Sketch). This proof simply summarises all the verifications that were made during
the construction of the BPMN process, which induce the validity of the aforementioned
theorem.

o Step 1 creates GGy out of all the sequential constraints present in the generated ex-
pressions. Trivially, @ C Cons;.

o Step 2 creates GGy by enriching GG; with the mutual exclusion constraints described
in the expressions. As enriching GG; with the mutual exclusion constraints only adds
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new nodes/flows to G1, G; C G5. Thus, the sequential constraints satisfied by G
remain satisfied in G5. Consequently, Cons; C Conss.

o Step 3 creates G5 by enriching GG with the explicit loops described in the expressions.
As enriching G5 with the explicit loops only adds new nodes/flows to Ga, G5 C Gj.
Thus, the sequential constraints satisfied by G5 remain satisfied in G3. Moreover, a
loop is added to G if and only if it does not violate any mutual exclusion that it
already satisfies. Consequently, Cons, C Conss.

e Step 4 creates (G4 by enriching GG3 with parallelism. As enriching G5 with parallelism
only adds new nodes/flows to G35, or changes the type of some gateways, the se-
quential /loop constraints satisfied by G3 remain satisfied in G4. Moreover, a parallel
split gateway is added to G if and only if it does not violate any mutual exclusion
satisfied by G3. Consequently, Consg C Cons,.

[

3.10 Conclusion

In this chapter, we presented an approach aiming at generating business processes written
in the BPMN format from textual descriptions of their behaviour. The approach takes as
input the textual description, and, after several successive steps, returns a BPMN process
that is syntactically correct with regards to the definition of the notation, and semantically
correct with regards to the expressions returned by GPT. This correctness is ensured by
several formal mechanisms, each of which is proven after its presentation. The approach
was fully implemented and tested. More details about this are given in Section 5.1.
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Business process optimisation has become a strategic aspect of companies’ management
due to its potential of cost reduction and throughput improvement. To be able to optimise
processes, there is a need to have at hand an explicit model of their behavior and quan-
titative features. Business processes are usually modelled using workflow-based notations,
including an explicit description of execution time and resources associated with tasks. In
this chapter, we propose process refactoring techniques whose goal is to change the struc-
ture of the process in order to optimise one or several criteria of interest such as process
execution time, resource usage, or total costs. To do so, our approach consists of different
ingredients including refactoring patterns, simulation techniques, and exploration of the
near optimal process solutions.

This chapter presents three refactoring-based approaches, each of them having its strengths
and its weaknesses, discussed at the end of their respective sections. Although differing on
several aspects, these approaches share a common basis which is their internal represen-
tation. This representation allows us to define refactoring patterns, and to provide some
strong semantics guarantees to them.

All these approaches were implemented in the form of 3 tools written in Java totaling 30k
lines of code, for test and validation purposes. More details about their implementation
and the corresponding experiments will be presented respectively in Sections 5.3.1, 5.3.2,
and 5.3.3 of this manuscript.

Running example. The running example used throughout this section is the one depicted
in Figure 4.1. It represents a simple goods delivery process, enriched with resources usage
for the tasks and probabilities for conditional structures. For instance, task Deliver by
drone requires one replica of resources driver and drone to execute, and has a probability of
execution p(Deliver by drone) = 0.4, as it belongs to a branch of a choice structure having
a probability of execution of 0.4. For now, the tasks do not have any duration, as they will
vary depending on the approach being presented. Further information on these durations
will thus be given in the next sections. Similarly, the IAT of the 100 instances of the
process will depend on the approach. Lastly, the pool of available resources of the process,
shared across all its running instances, and identical for all the presented approaches, is
P = {driver — 2, drone — 2, bike — 2, employee — 6, admin — 2, daemon — 2}.

4.1 Sequence Graph

4.1.1 Definition

In this chapter, a BPMN process G = (V, E, ) will not be represented as a classical
graph, as in the previous chapter, but as a sequence graph. This notation has the main
benefit of getting rid of the BPMN gateways by providing a hierarchical representation of
the process, which facilitates the reasoning on the semantics preserved by the refactoring
techniques.
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Figure 4.1: Running Example

Definition 4.1 (Sequence Graph). Let G = (V, E, X) be a BPMN process. The sequence
graph representation of G is a hierarchical acyclic graph G- = (V<, E-,X.), where:

— V. is a set of vertices whose elements v. are sets of tasks, choice structures, loop
structures, and sequence (sub)graphs that correspond to parallel elements of G
— E_ is a set of edges connecting the vertices in V- such that each v € V_ has at most
one incoming and one outgoing edge;
- 2< — 2
Definition 4.2 (Choice Structure). Let G. = (V., E-,3_) be a sequence graph. For all
ve € V., we define a choice structure @C € ve as a set of 2-tuples {(GL,p1), ..., (G, p,)}
where, for all i € [l..n], G is a sequence graph, and p; € [0,1] is its probability of

execution.

Definition 4.3 (Loop Structure). Let G. = (V_, E., %) be a sequence graph. For all
v € V., we define a loop structure @L € vo as a 3-tuple (GEF,GLF \prr) where GEF
and GLI' are sequence graphs, and prr € [0, 1] is the probability of ezecution of GLE'.

Remark 4.1. The first subgraph of a loop structure, namely, GEL, represents the body of

the loop. As it is necessarily executed, its probability of execution is always 1, which is why
it does not appear in the definition of this structure.

To ease the usage of these sequence graphs, we introduce several conventions and useful
operators that will be used throughout this chapter.

Definition 4.4 (Sequence Graph Conventions). Let G. = (V.,E., %) be a sequence
graph. The following conventions will be used in the rest of this thesis:

— L denotes the vertex type loop, corresponding to a loop structure of G;
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— C denotes the vertex type choice, corresponding to a choice structure of G~ ;

— T denotes the vertex type task;

— G denotes the vertex type sequence graph;

— O(v) € {L,C,T,G} returns the type of the vertex v, for all v- € V., for all v € v..

Definition 4.5 (Sequence Graphs Operators). Let G = (V., E-,3_) be a sequence graph.
We define the following operators:

def

— first(G.) = vo € Vo such that ol € Vo | v — v € E_, returns the first node of
G<;

— last(G.) Z v € Vo such that v € Vo | vo — v € E, returns the last node of
G<;

— pred(v.) £ v € Vo | vl — ve € E., returns the predecessor node of any v. €
Vo \{first(G.)};

def
— succ(ve) = vl € Vo | ve — vl € E_, returns the successor node of any v €

Vo \ {last(Go)};
— GG E U (Se, U Sg, U Sg,) returns all the sequence graphs hierarchically

v €V
nested in V_, with:

— Sa, ={v €wv. | O(v) =G} (sequence graphs in the main nodes);

— Se, = U U {vi} UG(v;) (sequence graphs composing loops/choices);
vEV OAS
9(1})6{2,6}
— Sa, = U G(v) (sequence graphs nested in sub-nodes).
VeV
9(1}):<g
— V(G.) o U V., returns all the vertices of the sequence graphs hier-
Gl<:(vé7E,<12/<)eg(G<)
archically nested in G;
— LG = U (Sp, U S, U Si,) returns all the loop structures hierarchically
U<€V<

nested in V., with:

— Sp, ={v v | 0(v) =L} (loop structures in the main nodes);

- S,= U U L(v;) (loop structures inside loops/choices);
oweleer
— Sp, = U L(v) (loop structures nested in sub-nodes).
o)~
—C(G.) = UV (S¢, U Se, U Se,) returns all the choice structures hierarchically
V<€V«

nested in V_, with:

— S, = {v € v | O(v) =C} (choice structures in the main nodes);

- So, = U U C(v;) (choice structures inside loops/choices);
VEV< Vi€V

0(v)E{L,C}
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Reception

— Se, = U C(v) (choice structures nested in sub-nodes).
VEV<

0(v)=G

— S(GL) E L(GL) U C(GL) returns all the conditional structures hierarchically nested
m V<;

— T(Go) = U U {vevl |0(v)="T} return all the tasks belonging

G =(VL,EL 2.)eG(G) v eV

— Yw)E U {o(v)}u U U XU U X, returns all the labels
VEVL veve GL=(V.,E_ X )cv VEVL
0(v)=T 0(v)e{C,L} 0(v)=G
of the elements belonging to v € V_;

» {v< eV(GL) | GLev. ifGL +£G.

— parent(G.) = VG € G(G.).

L otherwise
Ezxample. Figure 4.2 shows the sequence graph corresponding to the running example
presented in Figure 4.1. As the reader can see, the main graph (G.) consists of a sequence
of six nodes. Four of them contain a single task. The third one contains a task and a
loop structure @L, itself consisting of two subgraphs: GEL—with probability 1 and two

nodes—corresponding to the body of the loop of the running example, and GLF—with
probability 0.1 and a single empty node—corresponding to the optional part of the loop.
The fifth node contains a single choice structure @c’ itself consisting of two subgraphs:

GL with probability 0.4 and GZ with probability 0.6.

4.1.2 Sequence Graphs vs BPMN Processes

Generally speaking, sequence graphs cannot capture the expressiveness of BPMN processes,
even restricted to the subset of the syntax handled in this thesis. This is intrinsically
caused by the hierarchical structure of the sequence graphs, that prevents non-hierarchical
BPMN structures from fitting into these bounds. However, a balanced BPMN process (see
Figure 2.2(a)) can always be represented as a sequence graph. Indeed, each element of a
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BPMN process has a one-to-one mapping with an element of a sequence graph.

Proposition 4.1 (Sequence Graph and BPMN Processes Equivalence). Let
G = (V, E, X) be a balanced BPMN process. We state that there exists a se-
quence graph G- = (V., E-, %) such that G and G- are semantically equivalent, written

Proof (Sketch). Let G = (V, E, ¥) be a balanced BPMN process. The idea of this proof
is to show that every element of G can be (uniquely) mapped to an element of a well-suited
sequence graph G. = (V., F.,X_), and vice-versa. This mapping, represented by the ~~
symbol, is equivalent to a bijection between the set of balanced BPMN processes and the
set of sequence graphs, thus proving the desired equivalence. Let us present the main lines
of the proof:

—WweV | 0(v)=(t ) € T(G) | v~ te;
— vvevw(v)z®c, Jee € C(GL) | v~ e
— Vo eV [0() =, Tl € LIG) | v~ I

S Ve eV[0(v) =@, Foe €V(GL) | v e

The same idea holds for the reverse way: each element of a sequence graph can be written in
BPMN. Thus, balanced BPMN processes have an equivalent sequence graph representation,
and vice-versa. n

4.2 Notions & Operations on Sequence Graphs

The main idea of the refactoring approach is to modify syntactically (and thus, seman-
tically) the sequence graph of a process, in order to optimise it. Thus, this subsection
presents several notions and operations on sequence graphs that will be used in the rest of
this chapter.

The first notion introduced in this section is the notion of closest sequence graph of a task.
The closest sequence graph of a task is the only sequence graph containing a node itself
containing the given task. Such a graph is unique under the assumption that each task
of the process occurs once and only once. However, this restriction is rather light as, for
instance, indexing the tasks of the process before applying refactoring operations would be
sufficient.

Definition 4.6 (Closest Sequence Graph). Let G. = (Vo, E.,X_) be a sequence graph.
For allt € T(G.), there exists a unique G = (V., E_ 3" ) € G(G<) such that there is a
v € V. for which t € vl.. This sequence graph G'_ is the closest sequence graph of t, and
can be retrieved with the operator G*(t).
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Figure 4.4: Hlustration of the Closest Node of Task Send Payment Request

Ezxample. Figure 4.3 shows the closest sequence graph of task Send Payment Request. This
graph is the subgraph GEL belonging to the loop structure of the process, presented in
green dotted lines, as it contains the desired task in one of its nodes.

The node of the closest sequence graph of a task containing that task is itself called the
closest node of the task.

Definition 4.7 (Closest Node). Let G. = (Vo,E.,X.) be a sequence graph. For all
t € T(G<), the closest node of t is defined as

Vi) Eo. €GH(t) | t € e

Example. Figure 4.4 shows the closest node of task Send Payment Request. This node is the
first node of the subgraph G£* belonging to the loop structure of the process, presented
in green dotted lines, as it contains the desired task in its set of elements.

Similarly, the closest conditional structure of a task is a conditional structure containing
that task, and such that there is no nested conditional structure of this structure containing
that task. If the task does not belong to any such structure, its closest conditional structure
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Figure 4.5: Illustration of the Closest Conditional Structure of Task Send Payment Request
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is undefined.

Definition 4.8 (Closest Conditional Structure of a Task). Let G. = (V.,E.,¥.) be a
sequence graph. For allt € T(G.), we define the closest conditional structure of t as:

s if (3s € S(Go), IGL € s, IGL € G(GL), F. € G such that t € v'.)
S*(t) & A (Vs € S(GL), VGL € &', VG" € G(GY), Pv" € G" such that t € V")

1 otherwise

Example. Figure 4.5 shows the closest conditional structure of task Send Payment Request.
As this task belongs to the loop structure ® , it admits as closest conditional structure

this loop, displayed in green dotted lines in the figure.

In order to preserve the semantics of the original BPMN process, a task that is subject to
move must not cross its boundary, that is, the sequence graph of the closest conditional
structure containing that task, or the entire sequence graph if the task does not admit any
closest conditional structure.

Definition 4.9 (Task Boundary). Let G. = (V_, E.,¥_) be a sequence graph. For all t
in T(G<), we define the boundary of t as:

a(t) < {GQ €S (t) [teT(GL) ifS*(t)# L

G- otherwise

Ezample. In the particular case of our running example (Figure 4.2), the boundary of a
task strictly matches its closest sequence graph. Thus, the boundary of task Send Payment
Request corresponds to the sequence graph highlighted in green dotted lines in Figure 4.3.

Remark 4.2. Let G- = (V_, E., %) be a sequence graph. The sequence graph containing
the closest node of any task of G- is a subgraph of the boundary of that task. More formally,
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Figure 4.6: Illustration of the Removal of Task Send Payment Request

forallt € T(G<), GL = (VL,EL, X)) € G(G<) such that V*(t) € V. is a subgraph of O(t).

The movement of a task under its boundary is actually performed by two successive steps:
the removal of that task, and its (re)insertion.

Definition 4.10 (Task Removal). Let G. = (V_, E_,¥_) be a sequence graph. For allt in
T(G<), we define the removal of task t as the alteration of G« such that V*(t) = V*(¢)\{t}.
This ensured by the operator rem(G.,t) = G_.

Example. The removal of task Send Payment Request lets the sequence graph of our running
example with an empty node, as depicted in green dotted lines in Figure 4.6.

After a task removal, the sequence graph may contain some useless constructs. For instance,
a task removal may lead to a node containing a single sequence graph, which can thus be
extracted from this node, or to an empty node, or to a sequence graph containing a single
non-empty node, which consequently becomes useless and can be removed. To remove
these useless constraints from the graph, it is simplified after every task removal. These
simplifications of the sequence graph, repeated as many times as necessary to obtain a
sequence graph in which no simplification can be performed, are unified under the term
normalisation.

Definition 4.11 (Sequence Graph Normalisation). Let G. = (V., E.,¥.) be a sequence
graph. The normalisation operation, written norm(G.), is applied repeatedly on G after
any task removal until reaching its idempotence, that is, norm(G.) = G. This operation

is defined as
norm(G.) £ () norm;(G.)

i€[l...3]

where

—norm (G.) =

w |Go it3GL = (VL,EL,YL) € G(Go), Il € VL | vl =10
G- otherwise

where G~ is the alteration of G« in which G'_ = (\//;’, EZ, Y') such that:
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~ VL =VI\{ul};

o [\ {pred(v.) = v_,v. — succ(vl)} U {pred(vl) — succ(vl)}
if vl # last(G.) A v # first(GL);

~ B =1{e E"\{pred(v.) » v} if v # first(GL);

o [\ {ve — succ(vl)} if vl # last(GL);

o /. otherwise.

(removal of the empty nodes)

oGy 2 (G H3GL € 0GB VI k] =1 A Blany()) =
G- otherwise

where G = (VZ, E_,X.), O(any(v)) can be written G = (VZ, EZ,X7) and G is the
alteration of G« in which G'_ = (V., E. %) such that:

~VI=VIN{ul} UV

o £\ {pred(v.) = v, vl — succ(vl)} U {pred(v.) — first(G),
last(G2) — succ(vl)} U EZ if vl # last(G.) A vl # first(GL);
o [\ {pred(vl) = vL} U {pred(v.) — first(GZ)} U E”
- FE. = if vl # first(GL);
o £/ \{ve — succ(vl)} U {last(GZ) — succ(vl)} U E”
if v # last(G.);
o . U E” otherwise.

(removal of the useless nodes)

"~ normy(G.) ® G if 3G .E G(Go) st [V <IANGL #GoNVs e S(G.),G_ ¢ s
G- otherwise

where G'. = (VL EL,X¥"), and G_ is the alteration of G- such that parent(G.) =
parent(G.) \ {G.} U V. (removal of the useless sequence graphs).

Example. Given the sequence graph obtained after removing task Send Payment Request
from the original sequence graph, the normalisation rule norm; will remove the empty node
of this graph (shown in green dotted lines in Figure 4.6) and produce the sequence graph
presented in Figure 4.7.

A task that has been removed from a sequence graph will at some point be inserted back
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into it. This (re)insertion, that must occur under the boundary of the given task to preserve
the original trace semantics of the process, is ensured by four patterns whose goal is to
place this task at every possible position of the sequence graph. Each of these four patterns
generates a new sequence graph in which the position of the task differs from the others.

Definition 4.12 (Task (Re)lnsertion). Let G. = (V., E.,¥_) be a sequence graph, let
t ¢ T(G<) be a task already removed from G, and let G = 0(t). We define the set of

sequence graphs generated by (re)inserting ¢ in G- as:

ins(Ge,t) = U {é<}

agegen(G’@t)
where G is the alteration of G- such that parent(G”.) = parent(G.) \ {G.} U {G"}.

Remark 4.3. In the case where the main sequence graph G- is the boundary of the task
t, namely, O(t), the (re)insertion operation replaces the main sequence graph itself, as it
does not have any parent.

Definition 4.13 (Generation of Sequence Graphs). Let G = (V., E.,3.) be a sequence
graph, lett ¢ T(G<) be a task already removed from G-, and let G- = (V. E_,¥") = 0(t).
We define the modified versions of G- obtained by (re)inserting t in it as:

gen(G_,t) = |J genp(GL,t) U |J U gen(v,t)
i€[1...4] v eVL wvevl
0(v)=G

Definition 4.14 (Pattern 1). Let G. = (V., E.,X.) be a sequence graph, lett ¢ T(G.)
be a task already removed from G, let G. = (VL,E_,¥") = 0(t), and let v = {t} be a
new sequence node containing only t. The set of sequence graphs generated by applying



84 Chapter 4. Optimisation of BPMN Processes via Refactoring

Log
information

- . .
- e . s, p=0s
N

\ Tt
\ N
\ \
.
G
Deliver by Deliver by
drone bike

Figure 4.8: Hlustration of Pattern 1 on Task Validate Payment
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Pattern 1 to G and t is defined as:

o | {230 if V.=10
genp (G, t) = U i (v ~
1 gen (G,t) otherwise
i€[l...5]
where:
Cgenh(GLOE U (VIU{BEL\ {o; = u} Uy — 0.5 — 0 h 5L U o))

vj—vpERL
represents the addition of ¥ in sequence with any other node of G'_;

def

— gen}, (G, t) = {(VL U {0}, EL U {0 — first(G)},X. U {o(t)})} represents the
addition of ¥ in sequence before the first node of G'_;

— gen}, (GL,t) = {(VL U {0}, EL U {last(G.) — 0}, U {o(t)})} represents the
addition of U in sequence after the last node of G'_;
—genp(GL) = U U (VN LU ol \ v U {({{vhah{t —
v eVl vevl
0(v')=task
{v'}} {o(@),0(t)})}, EL,E_U{o(t)}) represents the addition of v in sequence before
any task of any node of G'_;
—genp(GLt) = U U (VEN oL U {l \ {) U {({{vh ek ({v)
v eVl vevl
0(v')=task
0}, {o(v), o))}, EL, XL U {o(t)}) represents the addition of U in sequence after
any task of any node of G'_;

Example. Figure 4.8 illustrates a possible result of applying Pattern 1 to task Validate
payment. As the reader can see, the task Validate payment has been put inside a new
sequence node (in green dotted line), which was inserted between other nodes of the graph.

Pattern 2 consists in putting the task to insert in parallel with any non-empty subsequence
of nodes of the graph.
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Definition 4.15 (Non-Empty Subsequence of Nodes). Let G. = (V.,E., %) be a se-
quence graph. A mnon-empty subsequence of nodes of G- is any {vl,..,v"} C V. such
that:

— {ol, .. 0} £ 0;

— Vie[l.n—1], v ot € E_.

The set of all non-empty subsequences of nodes of G- can be retrieved with the operator

Py (G-).

Definition 4.16 (Pattern 2). Let G. = (V., E.,X_) be a sequence graph, lett ¢ T(G-) be
a task already removed from G-, and let G'. = O(t). The set of sequence graphs generated
by applying Pattern 2 to G and t is defined as

o ({0},0,2)) if vl =first(GL) A v* = last(G)

S (VN5 UBELN Uk 5o (a2 suce())

U {0 — succ(v?)}, L) if ol =first(G)
o (Vi\s U, EL\ U {vl — v} \ {pred(v) — v}

genp, (G, t) = U i€[l..n—1]
SEP(GL) U {pred(vl) = 0},3.) if o =last(G.)
=(vl,...,07 ~ ; ;
e e (Vs U, EL\ U {ok - ot
i€[l..n—1]

\{pred(v2) — v2,v2 — succ(v?)}
U {pred(vZ) — 0,0 — succ(v?)},¥.) otherwise

where v = {{t,(s, U {vL —=v} U Z(vi))}}.

i€[l..n—1] i€[l..n]
Ezxample. Figure 4.9 illustrates a possible result of applying Pattern 2 to task Validate
payment. As the reader can see, the task Validate payment has been put inside a new
sequence node (in green dotted line), in parallel of a non-empty subsequence of nodes of
the graph that now belongs to this new node.

Pattern 3 consists in putting the task to insert before or after any combination of elements
of any node of the graph.

Definition 4.17 (Pattern 3). Let G. = (V., E.,X.) be a sequence graph, lett ¢ T(G<) be
a task already removed from G-, and let G'. = O(t). The set of sequence graphs generated
by applying Pattern 3 to G and t is defined as:

genpg(G/<7 t) g U gen;g(G/<7 t)

ie[l...2]

where:
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Figure 4.9: Hlustration of Pattern 2 on Task Validate Payment

—genp(GL,)= U U (VINvL ULl \ So, ({{th Su b, {{t} = St {o(t) U

’U/<€Vé Sv/ €2vl<
<
S, 1<l
U X(v2)})}) represents the addition of task t before any combination of elements
’UZESU/<
of any node of G_;
CEenh(CLNE U U (VL U S (LR S (S (). (o) U
VeVl g, ea<
<
1S,y 1<l
U X(v2)})}) represents the addition of task t after any combination of elements
'UZGSvI<

of any node of G'_.

Ezxample. Figure 4.10 shows a possible result of applying Pattern 3 to task Validate payment
while releasing the constraint on the minimal size of the combination. As the reader can
see, the task Validate payment has been put inside a new sequence node (in green dotted
line), connected to a node containing the task Prepare parcel (which is also new). Here,
the task Prepare parcel acts as a combination of size 1 of elements of the node containing
it and the loop construct.

Pattern 4 deals with choice structures, and, consequently, slightly differs from the three
previous ones. A choice is a structure composed of several branches, among which only
one will be executed. To ensure that the traces of the process remain unchanged and that
the frequency of task occurrences within them is preserved, choice structures require a
specific treatment. The only way to properly insert a task inside a choice is to insert it
in all the branches of the choice. By doing so, the execution of such specific task remains
unconditional. To perform this insertion, the four patterns are applied to each sequence
graph composing the choice, thus creating several new sequence graphs for each branch of
the choice. The cartesian product of these sets of sequence graphs is then computed to
obtain a set of unique choice structures, each corresponding to a different set of previously
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Figure 4.10: Mlustration of Pattern 3 on Task Validate Payment

generated sequence graphs. Each of these choice structures then replaces the original one
to create a new complete sequence graph.

Definition 4.18 (Pattern4). Let G- = (V., E.,¥) be a sequence graph, lett ¢ T(G.) be
a task already removed from G, and let G'. = O(t). The set of sequence graphs generated
by applying Pattern 4 to G and t is defined as:

genp (G t) = U U {(VLEL.E_ U{o(t)})}

v eV, ve, —~ - n )
<EV< 0(v)=<C (G1<,...,G2)€1_[1gen(G1<,t)
n 1=
U:((G1<7p1):-~~7(G<7pn))

where V2 = V2 {ol} U0\ {o} U{((GL, p1), -, (G, pn))}}-

Ezxample. Figure 4.11 shows a possible result of applying Pattern 4 to task Validate payment.
As the reader can see, the task Validate payment has entered the choice structure @C and

is now appearing in both subgraphs (branches) of that choice. In the first subgraph (GL),
the task has been inserted after the task Validate payment by Pattern 1, whereas in the
second subgraph (G2), it has been put in parallel of task Deliver by bike by Pattern 2.

4.3 Structure and Trace Persistency

This section demonstrates that moving a task within a sequence graph (i.e., removing it
and inserting it back later) preserves its structure and its traces, excluding the moved
task. More precisely, we show that for every trace in the original graph, there exists
a corresponding trace in the modified graph that is a permutation of the original one,
maintaining the same task occurrences. However, before presenting these results, we need
some considerations and some preliminary results.

For some of the results in this section, we want to remove all the replicas of a given
task introduced by the gen operation, and more precisely, by Pattern 4. Indeed, as a
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consequence of potentially inserting the task to move inside a choice structure, this pattern
may generate several replicas of this given task, in order to insert each of them in a different
branch of the choice structure. We thus introduce a slightly modified version of the remove
operator, that is in charge of removing all the replicas of a given task, based on its name.

Definition 4.19 (Complete Removal of a Task). Let G- = (V_.,E_-, %) be a sequence
graph, and let t € T(G<) be a task of G.. We define the rem* operator, which removes all
occurrences of t in G, as the composition of the rem operation on all the tasks having the
same label than t, that is

rem* (G.,t) = () rem(G.,t)
t'eT(Ge)
o(t')=0o(t)

Additionally, the comparison of the structure of the sequence graphs without the moved
task is simpler if these sequence graphs are normalised. Thus, we consider that the nor-
malisation operations defined in Section 4.2 are applied right after any task removal.

Our first result states that, up to the normalisation operations, apart from moving the task
from one place to another, the structure of the graph is not modified by the ins operation.
Before proving it, let us show that the statement is true under the boundary of the task
being moved, preparing the field for considering the whole sequence graph instead of only
the boundary.

Proposition 4.2 (Boundary Persistency). Let G. = (V., E., ¥.) be a sequence graph, let
t ¢ T(G<) be a task already removed from G-, and let G. = 0(t). We state that

VG € gen(G,t), rem* (G, t) = G

Proof. In accordance to Definition 4.13, CAJ’< is generated by the gen operation either di-
rectly on G'_, using one of the genp, operations, or on some nested subgraph of G..
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However, even though genp, , genp , and genp, directly modify the sequence graph they
operate on, genp acts recursively on the branches of the conditional structures of the
graph. Thus, the proof is carried on by structural induction on the nesting level at which
the insertion is located, with genp, , genp , and genp, representing the base cases, and the
recursive calls in gen and genp, providing the induction steps.

As base case, let us consider the case in which the insertion occurs directly on some graph
G. = (V.,E_,X_) using one of the patterns 1, 2 or 3. Let us consider each of them
separately.

— Pattern 1. There are two cases for genp .

IfG. = (0,0) then genpl(é<,t) = {({{t}},0)}. By removing the task, we obtain
rem(({{t}},0),t) = ({0},0). Since the node containing ¢ is now empty, the normal-
isation rule norm; generates an empty graph, i.e., norm;(({0},0)) = ({},0) = (0,0),
as desired. As (,() is the main graph, it is preserved by the normalisation rules.

Thus, for all G’ € genp, (G, t), rem(G’ t)=G-.

Else, if G- is not empty, Pattern 1 inserts ¢ in a new node {t} that is added at
the beginning, the end, or between any two nodes of G-, creating a new graph G'.
Thus, removing ¢ from G, that is, rem(G"., t), actually removes ¢ from {t} as it is its
closest node. This leads to an empty node {}, which is deleted by the normalisation
rule norm;. Thus, for all G € genpl(G<, t), rem(G’<, t)=G-.

— Pattern 2. In the definition of genp , the task ¢ is inserted in a node next to a

subsequence of nodes of G-, called G- € 79(*)(@<). To do so, the subsequence is
replaced by a node containing only ¢ and the subsequence, now behaving as an
independent sequence graph. The generated graph is called G”.. Removing ¢ from

G’< corresponds to removing ¢ from the node {t, G}, which leaves it containing only

G .. As this node now contains only a single sequence graph, which is by construction
not a task boundary nor the main graph, it is eligible for being removed by the
normalisation rule normy, which consequently leaves G’ in the same disposition than
G<. Thus, for all G, € genp (G, t), rem(G'_,t) = G<

— Pattern 3. In the definition of genp , the task ¢ is inserted before or after any
combination ¢ of elements of any node . of G.. This is done by creating a se-
quence graph G” composed of two nodes, one containing only ¢, that is, {¢}, and
one containing only the combination, that is, {c}, and an edge which is either
{c} = {t}, or {t} — {c}. Thus, we have either G = ({{t}, {c}}, {{t} = {c}}, E<)
or G% = ({{t},{c}},{{c} = {t}},X<). G2 then replaces the original combination
of elements in ©.. This leads to a new sequence graph G_.. By removing ¢ from
G, G mow looks like ({{c}, {}}, {{c} — {}}3<) or ({{e}, () {{} — {c}}. =),
The empty node of G2 is removed by the normalisation rule norm;, which leads to
a graph G = ({{c}},0,%.). Thus, G’~ now contains a node itself containing a
sequence graph with only one node. According to the definition of the normalisation
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rule norms, this sequence graph is useless and the elements of its unique node can be
reinserted in the node hosting this sequence graph. Consequently, the elements of ¢
are added back to #.. Thus, for all G”. € genp, (G.,t), rem(G,t) = G..

Once proved for the base case, let us assume that the property holds for any sequence
graph of nesting level n. Two cases must then be considered for the induction step.

The first case considers Pattern 4, which acts on choice structures in G.. Specifically,

given a node 7. € V., and given a conditional structure s = {(Gi,pl), ey (é’i,pn)} in v,
the set of sequence graphs generated by operation genp, is
genp (G t) = U {(VL,E<, X U{o(t)}})}
(GerGo)e ] ] gon( Gt

i=1

~ ~ ~1 an
where V2 = Vo \ {0} U{0\ {s} U{((G.,p1), ... (G, pn))}. By induction hypothesis, for

all i € [1...n], for all G’l € gen(GL,t), rem*((?;,t) = G because the G have a nested
level equal to 1 (they are the topmost sequence graphs on which the gen function is called).
As the generated choice structure simply replaces the old one, the property also holds on
G.. As the property holds on G_, it _holds on a graph having a nesting level of n + 1.

Thus, for all G- € genP4(G<, t), rem (G<, t) = G..

The second case takes into account the recursive call of the gen function on all subgraphs
of G, that are, the o € S5_ = U {0 € 9. | 0(9) = G}. With regards to the current

V<€V
gen call, all these subgraphs have a nested level of 1. Thus, the induction hypothesis holds

on all these graphs, i.e., for all o' € Sg_, for all G- € gen(?',t), rem*(G,t) = 0. As the
original graph o' is snnply replaced by the generated one G-, the property also holds on
the original graph G.. As the property holds on G<, it holds on a graph having a nesting

level of n + 1. Thus, for all G< € gen(G.,t), rem*(G.,t) = G_. O

Arising from the previous proof, the result on the boundary of the removed task may be
extended to the entire sequence graph.

Corollary 4.1 (Structure Persistency). Let G. = (V_, E-,¥_) be a sequence graph, and
lett € T(G.) be a task of G.. We state that

VG € ins(rem(G_,t),t), rem*(G.,t) = rem(G.,t)

Proof. Let G. = (V.,E-,¥.) be a sequence graph, and let ¢ € T(G.) be a task of
G.. By Definition 4.12, ins(rem(G_.,t),t) returns the set of sequence graphs generated
by replacing 9(t) by one of the graphs belonging to Saz = gen(rem(0(t),t),t) in G-.
Moreover, by Proposition 4.2, for each G. € Sg, rem*(G.,t) = rem(d(t),t). But then, by
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Definition 4.10 and Remark 4.2, we can conclude that for each G’ in ins(rem(G.,t),t),
rem*(G.,t) = rem(G.,t). O

If the structure of the graph without considering the moved task is the same, then its
traces must also be the same.

Corollary 4.2. Let G- = (Vo, E.,3.) be a sequence graph, and let t € T(G-) be a task
of G.. We state that for all G.. € ins(rem(G.,t),t):

— VAo € A(Go), 3N, € A(GL) such that Ao\ {t} = N_\ {t};
— VAL € A(GL), e € A(G<) such that N\ {t} = Ao\ {t}.

Proof. Let G- = (V_, E-,3_) be a sequence graph, and let ¢t € T(G.) be a task of G_.
Since, by Corollary 4.1, for all G € ins(rem(G_.,t),t), rem*(G.,t) = rem(G.,t), that
is, G- and G are identical after removing ¢, then they must have the exact same traces
without ¢. O

Moreover, there is not only a correspondence between the execution traces of the original
graph deprived of one of its tasks and the ones of any graph obtained by removing and
inserting back this task also deprived from it. Indeed, as both graphs have the exact same
structure, their execution traces must be strictly identical.

Corollary 4.3. Let G. = (V_,E-,X_) be a sequence graph, and let t € T(G.) be a task
of G.. We state that

VG’ € ins(rem(G,t),t), A(rem*(G.,t)) = A(rem(G..t))
Proof. The proof follows directly from Proposition 4.2 and Corollaries 4.1 & 4.2. ]

This results can be expressed in a different form.

Corollary 4.4. Let G- = (V_,E-,X_) be a sequence graph, and let t € T(G.) be a task
of G.. We state that

VG € ins(ren(Got),0), U A\{ = U N\ {}}

AEA(G <) NeA(GL)
Proof. The proof follows directly from Proposition 4.2 and Corollaries 4.1, 4.2, & 4.3. O

The above results show that the structure, and hence the execution traces of the graph,
are preserved by the movement of any of its tasks, without considering it. Furthermore, by
definition of the patterns responsible of moving a task, we can guarantee that the number
of times a moved task occur remains the same as in the original graph. Said differently,
this means that the number of occurrences of a task in a trace of the original sequence
graph remains identical throughout the lifetime of this graph. This implies that not only
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there is a correspondence between the execution traces of a graph and another where a
task has been moved, but one of the traces of the original graph has to be a permutation
of a trace of the resulting graph, and vice-versa.

Proposition 4.3. Let G- = (Vo.,E-,X.) be a sequence graph, and let t € T(G.) be a
task of G.. We state that

— VG € ins(rem(G.,t),t), VA € A(G.), 3N, € S(A(GL)) | e = A\ ;
— VG. € ins(rem(G.,t),t), VAL € A(GL), I . € S(A(GL)) | AL = ..

Proof. Let G- = (V_, E-,¥_) be a sequence graph, and let ¢t € T(G.) be a task of G_..
The existence of a trace Ao € A(G<) and a trace \_ € A(G) such that A\ {t} = X\ {t}
is already stated in Corollary 4.2. The fact that A is a permutation of X and oppositely
basically describes that the number of occurrences of ¢ is identical in both Ao and A_.

By definition, the patterns used to insert a task back into a graph inherently preserve the
number of occurrences of a task. Indeed, these patterns are applied on the boundary of ¢,
which is by definition the closest conditional structure surrounding ¢. Thus, not exceeding
it ensures that the conditionality of ¢ remains the same throughout the refactoring steps.

Regarding the fourth pattern, which may duplicate a task and thus insert it several times,
the key is to remember that when a task is duplicated, these duplicates are inserted in all
the branches of the choice targeted by the pattern. By doing so, this task remains exactly
as conditional as it was in the original version of the graph, because any branch of the
choice will execute it. Consequently, the number of occurrences of this task does not vary
by applying Pattern 4. [

4.4 Task Dependencies

In business processes, tasks are naturally ordered by the sequence flows that connect them.
Thus, two tasks connected by a sequence flow are dependent, as one must be executed
before the other. As the solution presented in this chapter performs a restructuring of
the process, there is no guarantee regarding the final position of a task in the resulting
process, compared to its position in the original one. Nonetheless, some tasks may have
to remain in a specific order to preserve the meaning of the process (e.g., some product
should be collected before being packaged, or packaged before being delivered). In the
refactoring procedure, dependencies between tasks may change. However, a set of strong
dependencies will be guaranteed to remain. Such strong dependencies will be assumed
from the beginning of the refactoring procedure, either given by the user or computed
by analysing the data-flow graph corresponding to the business process [EG16, DRS18¢].
They are similar to the order imposed by the sequential operator ‘<’ appearing in the
constraints presented in Chapter 3.

Definition 4.20 (Task Dependency). Let G = (V, E, X) be a BPMN process. A
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dependency between two tasks t;,t; € V is represented as t; < t;, or (t;,t;). The set of
task dependencies of G' is noted Dep.

Given tasks ¢; and t;, such that (¢;,t;) € Dep, we say that ¢t; depends on ¢;. We say that
two tasks ¢; and t; are dependent if (t;,t;) or (¢;,t;) € Dep, and independent otherwise. If
t; < tj, then ¢; is said to be a predecessor of t;, and t; a successor of t;.

Definition 4.21 (Dependency Satisfaction). Let G = (V, E, X) be a BPMN process
and let t;,t; € V' be two tasks such that (t;,t;) € Dep. We say that dependency (t;,t;) is
satisfied in G if and only if there does not exist A € A(G) such that (t; € \) A (t; € A) A
(index(t;) < index(t;)).

This notion can be extended at the level of the BPMN process to the whole set of depen-
dencies.

Definition 4.22 (Dependencies Satisfaction). Let G = (V, E, X) be a BPMN process
and let Dep be its set of dependencies. G is said to satisfy the dependencies, noted G |= Dep,
if and only if for all (t;,t;) € Dep, (t;,t;) is satisfied in G.

Fxample. The running example displayed in Figure 4.1 contains several dependencies that
should be preserved by the refactoring operations. In particular, we have Dep = {(Collect
goods, Prepare parcel), (Send payment request, Check payment reception), (Check payment
reception, Validate payment), (Validate payment, Deliver by drone), (Validate payment, Deliver
by bike), (Prepare parcel, Deliver by drone), (Prepare parcel, Deliver by bike), (Fill in admin.
doc., Deliver by drone), (Fill in admin. doc., Deliver by bike)}. As an example, dependency
(Send payment request, Check payment reception) indicates that task Check payment recep-
tion can not execute before task Send payment request. However, a dependency such as
(Log information, Validate payment) is unnecessary and does not exist, because both tasks
can execute without any constraint regarding their order.

4.5 Fixed Durations Approach

The first approach that we propose performs a “one-shot” refactoring of the BPMN process
G given as input, in the sense that the process is modified once in a monolithic way.
This approach only supports processes having fixed durations for tasks and IAT, that are,
durations following a constant distribution. The idea of this approach is to first build a new
BPMN process G’ having the shortest stochastic worst-case execution time in a infinite
resources context, while satisfying the dependencies of G. Then, the minimum pool of
resources needed by this optimal process to execute without latencies is computed. If this
pool is lower than or equal to the real pool of resources that G’ has access to, then G’ is
considered optimal, and returned to the user. Otherwise, several specific tasks responsible
of the overuse of some of the resources are removed from their parallel structures and put
in sequence, in order to reduce the AET of the process by lowering its synchronisation
times. The whole approach is summarised in Figure 4.12. This approach was implemented
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Figure 4.13: Running Example with Fixed Durations

as a tool that was used for test and validation purposes. It is detailed in Section 5.3.1.

Running example. The running example used throughout this section is a version of the
BPMN process shown in Figure 4.1 where tasks have been assigned constant durations,
as required by this approach. It is given in Figure 4.13. Similarly, the inter-arrival time
of the instances of the process is set to a constant value of 25 minutes. Considering the
durations of the tasks of the process, a single instance of it should take at least 146m
(2h26m) to complete, depending on the number of times the payment will not be received,
or the mode of delivery of the good. When all the instances are running together, the
average time taken by an instance to complete goes up to 767m (12h47m).

4.5.1 Generation of the Optimal Sequence Graph

The first step of this approach consists in computing the optimal version of the BPMN
process given as input. For now, what we consider an optimal BPMN process is a process
obtaining the shortest stochastic worst-case execution time when executed a single time
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Figure 4.14: Optimal Version of the Sequence Graph Representation of the Running Ex-
ample

in an infinite resources context. Under these assumptions, the optimal version of the
original process is a fully parallel process, where every tasks and conditional structures are
in parallel. The generation of this optimal process is simple, although it has to preserve
the eventual dependencies of the process. Indeed, it suffices to put the tasks belonging to
Dep into sequence nodes, connect them, and put every new sequence graphs in parallel.
However, as shown in Section 4.3, to preserve the trace semantics of a sequence graph,
one must not move a task outside of its boundary. To do so, the dependencies in Dep
are temporarily rewritten as dependencies between their boundaries, if any. According to
the formalism of Section 4.3, it is also allowed to put tasks inside every sequence graph
belonging to a choice. For this reason, there might be several semantically equivalent but
syntactically different versions of the optimal sequence graph. The version that is kept is
the one in which the fewest task duplications have been performed. Indeed, duplicating
a task and inserting it inside a choice structure has the drawback of reducing its moving
freedom, as its boundary is now the choice structure in which it has been inserted.

Ezxample. Considering the sequence graph of the running example along with its dependen-
cies, one can build the optimal sequence graph shown in Figure 4.14. In order to preserve
the trace semantics of the original sequence graph, the reader can see that, for instance,
task Validate payment has been put after @L, and not directly after task Check pay-

ment reception inside ® , which would have induced multiple occurrences of task Validate
payment in several traces, unlike in the original process.

4.5.2 Computation of Resource Usage

In the previous step, we have built a sequence graph that is an optimal representation of our
initial process, and which satisfies the dependencies provided by the user. Nonetheless, this
graph is optimal under the assumptions that it is executed a single time in an unlimited
resources context. In practice, the pool of resources is usually limited. For instance,
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a company will have a finite number of employees, or machines, and will have to deal
with them. In a limited resources context, this sequence graph would also be an optimal
representation of the initial process if it was executed a single time, i.e., in a single instance
context. However, as long as several instances of the process are involved, this sequence
graph may no longer be optimal. Indeed, if some resources are not sufficiently represented,
the execution of the process may be delayed, due to eventual additional synchronisation
times coming from the parallel merge gateways.

The goal of this step is to verify whether our current version of the process can be executed
without involving such overheads. To do so, our proposal consists in statically computing
the pool of resources that would be needed by the process to execute without any com-
petition for the resources, called P—. If the available pool of resources of the process P is
smaller than P— (i.e., P C P-), we consider that the current sequence graph is optimal.
The corresponding BPMN process is then synthesised and returned to the user as optimal
version of the original process. Otherwise, it might be the case that a less parallel version
of this graph would obtain a lower average execution time. To avoid such an overhead,
steps 3 and 4 of Figure 4.12 are performed, with the goal of sequencing some tasks which
would potentially induce delays if they remain in parallel. In this case, the BPMN process
returned to the user is an optimised version of the original one, but provides no guarantee
of optimality.

To compute the aforementioned pool of resources, the idea is first to statically compute
the tasks that may be executing at any given time of the execution of a single instance of
the process. These tasks are not representing an execution of the process, but depicts all
the possible combinations of tasks currently executed at any time of the (real) execution
of the process. This is particularly useful in case of conditional structures (choices and
loops), as a single execution of the process would have executed a single branch of a choice
structure, or the loop a certain number of times but not necessarily enough times. In an
infinite resources context, each task of the process can execute as soon as it is ready to.
Moreover, the durations of the tasks are, in this approach, following a constant distribution.
Under these assumptions, this set of tasks can be computed using the stochastic worst-case
execution time of a sequence graph, itself computable statically.

Definition 4.23 ((Statically Computed) Stochastic Worst-Case Execution Time). Let
G. = (Vo,E_.,X.) be a sequence graph and P, be an infinite resource pool. In a single
instance context, where the durations of the tasks of G- follow a constant distribution, the
stochastic worst-case execution time of G- is (recursively) defined as

SWCET(G.,Py) = Y. SWCET(v.,Py)

v< €V

where

SWCET (v<, Py) = max SWCET (v, Py,)

VEV<
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where

SWCET (v, Py) if (v
max {SWCET (G-, Px)} if 6(v
SWCET (v, Py,) = { (G<pi)ev
(i + 1) x SWOET(Gpp, Po) +i x SWCET(Grp, Pa) if 60
’ (

(v) if (v

where i € N such that (prr)* < 0.01 and (prrp)™" > 0.01.

Example. Given the above formulae and the optimal version of the sequence graph of
the running example, we can compute its stochastic worst-case execution time. Here, it
corresponds to the maximum between the duration of task Log information and the duration
of the sequence graph containing all the remaining tasks. This sequence graph’s duration
is itself the addition of (i) the maximum between the duration of task Fill in admin. doc.,
the duration of the sequence graph containing tasks Collect goods and Prepare parcel in
sequence, and the duration of the sequence graph containing the loop structure executed
two times (after which its probability becomes equal to the threshold of 0.01) and the
task Validate payment in sequence, and (ii) the duration of the choice structure. This gives
a stochastic worst-case execution time of 105m, or 1h45. Figure 4.15 provides a visual
representation of this computation, where 5 minutes correspond to a space of 1 for the
sake of space.

Based on these definitions, the set of tasks potentially executing at the same time in the
worst case, called Sy, maps every value in [0...SWCET (G, Px)] to the tasks potentially
executing at this instant of time, retrievable with the operation Sp(t).

Ezample. Considering the running example, the set of tasks potentially executing at the
same time in the worst case is Sy =

e

..1[ = {Send payment request, Log information, Fill in admin. doc., Collect goods}
..6] = {Check payment reception, Log information, Fill in admin. doc., Collect goods}
.7 — Sr(0)
7..12[ = Sp(1)

—_

[
[
— |
[

&
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— [12...13[ — {Validate payment, Log information, Fill in admin. doc., Collect goods}
— [13...25] — {Log information, Fill in admin. doc., Collect goods}
— [25...30[ — {Fill in admin. doc., Collect goods}
— [30...45] — {Collect goods}
— [45...60[ — {Prepare Parcel}
— [60...90[ — {Deliver by drone, Deliver by bike}
[

90...105[ — {Deliver by bike}

The notion of potential execution of tasks is clearer here, where, for instance, S~T(65)
contains both tasks Deliver by drone and Deliver by bike, although only one of them will be
executed by the process.

However, in this work, we are interested not only in executing a single instance of a process,
but several of them. As the IAT follows a constant distribution, the maximum number of
instances executing simultaneously is computable statically.

Definition 4.24 (Maximum Number of Simultaneous Instances). Let G = (V., E., )
be a sequence graph such that for allv € T(G.), 6(v) € N, let IAT € N be the inter-arrival
time of G.. The maximum number of simultaneous instances of G is defined as

def

Iaw =2 ><IB/A_1

where
7 def [SWCET(G<,POO)]
B/a = IAT

The quantity Ip/4 represents both the number of instances that were already running
before the start of the considered instance (including it), and the number of instances that
will start during its execution (including it). It is consequently doubled to consider both
the instances before and the ones after the main one, and lowered by 1 in order to remove
the main instance counted twice. More than simply being able to compute the maximum
number of simultaneous instances, we also know the shift between the execution of the
running instances, which is the IAT. Thus, we know that when an instance [ is at time ¢
of its execution, the p* instance that was already running before the start of I is at time
t —p x I AT of its execution, while the n'” instance that started running after I is at time
t+n x ITAT of its execution. Given this information, we can compute the stochastically
optimal pool of resources of our process, by retrieving the maximum usage of each resource
throughout the execution of multiple instances of the process.

Definition 4.25 (Stochastically Optimal Pool of Resources). Let G. = (V., E-, %) be
a sequence graph, let S,.s be the set of resources used by G, let Sy be the set of tasks
executing at the same time in the worst-case, let IAT be the inter-arrival time of the
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instances of G.. We define the stochastically optimal pool of resources of G- as

IB/A_l

P-E (J {r—7T max > > p) xp)(r)]}

- tel0...SWCET (G <,Px)] i=—Ip/a+1 ve Sy (ix IAT+t)

where 1 represents the index of the considered instance to ensure a proper shift of the IAT.

This pool of resources is then eventually compared to the available one. Basically, if
P C P_, the available pool of resources contains a sufficient number of replicas of
each resource to execute an arbitrarily large number of instances of our process without
introducing significant delays in it. However, if P ¢ P_, then some tasks of the process may
compete to acquire the resources they need, which will lead to latencies in the execution of
the process, and thus to a greater AET. The next step consequently consists in minimising
the competition of such resources.

Example. Considering the set of potentially executing tasks of the running example, its
IAT, and its stochastic worst-case execution time, the stochastically optimal pool of re-
sources is P_ = {driver — 2,drone — 1, bike — 2, employee — 5, admin — 4, daemon — 1}.
This computation is made more visual by representing the execution flows of each instance
of the process running in parallel, that is, an instance called main instance (Figure 4.15),
4 instances already running when the main instance started (Figure 4.16 (a)), and 4 in-
stances that started running after the main instance (Figure 4.16 (b)). Reminding that
P = {driver — 2, drone — 2, bike — 2, employee — 6, admin — 2, daemon — 2}, we see that
P ¢ P_, because there are not enough replicas of resource admin in P. Thus, the impact
of the competition for this resource has to be quantified.

4.5.3 Quantification & Minimisation of the Resource Competi-
tion Impact

At this stage of the approach, we remarked that the stochastically optimal resource pool of
our sequence graph P_ was smaller than its available resource pool P. As a consequence,
some tasks of the process will not be able to execute as soon as they should, because their
corresponding resources will not be available at that time. The goal of this step is to deter-
mine whether this shift in the execution of certain tasks will induce long synchronisation
times in the process, and thus if putting these tasks in sequence would allow to obtain a
shorter AET than if these tasks remained in parallel. Thanks to the previous computa-
tions, we know precisely the number of resources required by the process at any given time
of its execution. Based on these information, we compute a value called absorbance, which
reflects the capacity of the process to absorb the lack of certain resources without causing
a significant increase of its AET. It is defined as the ratio between the amount of time
during which the lacking resources are overused and the amount of time during which they
are underused.

Definition 4.26 (Absorbance). Let G- = (V., E.,X_) be a sequence graph, let St be the



100 Chapter 4. Optimisation of BPMN Processes via Refactoring

1 ]
— I >

A

N
202122232425262728293031323334353637383940 4:1 \"‘é@/
1

1
rer by drone I
1

Detiver by bike I T I A I +
lIIIIIIIIIIIIIIIIIIII>(,

1:5 1617181920212223242526272829303132333435 3:6 é\,ﬁo
&

Prepare
parcel

1
1
|
rrrrrrrrrrrrrrirrirrT T
10111213141516171819202122232425262728293031
1
1
1
1
1

Deliver by drone

Deliver by bike | | | | | | | | |

<
> &
N
&

doc. Deliver by drone

Prepare
parcel

T T T T T T T T T T T T T T T T TT T 1>
56 7 8 91011121314151617181920212223242526 4

Deliver by bike I I I I '

Figure 4.16: (a) Tasks Execution Flows of the Already Running Instances

set of tasks executing at any given time of the execution of G, let P be its available pool of
resources and P be its stochastically optimal one. For all v in P such that P(r) > P_(r),
we define the absorbance of r as

Iyjp—1
| U {t1 > X p)xp)r)> P}
def tE[0...SWCET(G,Px)) —Ia/B+1 veST(ix IAT+t)
absorbance(r) = Top1
U {t] > X p)xp)(r)<Pr)}
t€[0...SWCET(G, Poo )] —Ia 1 veSp(ix IAT+t)

If this value is below a certain threshold (100 by default, based on our experiments), we
conclude that the lack of the incriminated resource will not result in a significant increase of
the AET of the process (i.e., the process will absorb the induced delays). If this is the case
for each lacking resource, the process does not need any modification, and is consequently
returned as is to the user. Otherwise, if some lacking resources have an absorbance that is
above the threshold, we consider that some tasks have to be removed from their parallel
structures and put in sequence to prevent the appearance of significant synchronisation
times in the process.

Example. According to the available pool of resources of the running example P and the
stochastically optimal one P—, we can see that we lack some replicas of resource admin. Its
usage during the execution of the process is given in Figure 4.17. As the reader can see, it
is overused most of the time, and never underused. This means that it has an absorbance
of co (the denominator of the fraction is equal to 0), and consequently that its overuse
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Figure 4.17: Usage of Resource admin Over Time

cannot be handled properly by the process, thus resulting in additional delays or latencies
in the execution of the process. The result of this analysis is that some of the tasks making
use of resource admin have to be sequenced.

The idea of this sequencing is to proceed step by step in order to keep as many tasks as
possible in parallel, while reaching an absorbance lower than the threshold. To do so, the
tasks are removed one by one from their parallel structures, and the absorbance of the new
process is recomputed after each sequencing. However, the order in which the tasks are
selected for sequencing matters. Indeed, a task having an important duration has more
impact on the AET of the process, and should thus probably have a higher probability
of remaining in parallel than a task having a short duration. Oppositely, a task requiring
many replicas of a given lacking resource is more likely to provoke synchronisation delays
than a task requiring a fewer number of replicas of this resource. Thus, it should have a
lower probability of remaining in parallel than its sibling. Consequently, the tasks requiring
a lacking resource subject to sequencing are ordered by a score representing how impactful
it is to sequence them. The higher the score, the higher the interest of being sequenced.

Definition 4.27 (Score of a Task). Let G. = (V.,E-,X_) be a sequence graph, and let
P be the available pool of resources of G. For allt € T(G-), we define the score of t with
regards to r as

ar P()(r)

score(t,r) = 5(1)

Ezample. Considering our running example (Figure 4.13), three tasks are making use of
resource admin: tasks Fill in admin. doc., Check payment reception, and Log information.
According to their usage of this resource and their duration, their score is respectively

% = 0.033 for task Fill in admin. doc., % = 0.2 for task Check payment reception, and
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% = 0.04 for task Log information. Thus, task Check payment reception will be the first

task put in sequence, followed by task Log information and finally task Fill in admin. doc.

4.5.4 Sequencing of Non-Parallelisable Tasks

This step applies whenever some tasks of the process have been tagged for sequencing.
Sequencing a task consists in trying to remove it from the parallel gateway(s) to which it
belongs, if any. In Section 4.3, we saw that, in order to preserve the trace semantics of
the original process, a task could be moved only under its boundary. Consequently, the
sequencing of a task must happen under its boundary. This means that, if, for instance,
the boundary of the task belongs to a parallel gateway, this task will remain in parallel.
Unfortunately, this is the price to pay in order to preserve the structural semantics of the
process described in Section 4.3. Then, the task is simply put in sequence of any node of its
boundary using the first pattern provided in Definition 4.14. Among the generated sequence
graphs, the one offering the best trade-off between stochastic worst-case execution time and
absorbance of the underrepresented resource is kept as best candidate. The operation is
repeated for all the tasks that must be sequenced. Finally, the sequence graph obtained
after the last task sequencing is transformed into its corresponding BPMN process, and
returned to the user.

Ezample. Given our running example (Figure 4.13) and the results of the absorbance
computation, we saw that one or several tasks making use of resource admin have to be
sequenced. Moreover, we know the order in which they should be considered: task Check
payment reception is the first candidate, task Log information the second, and task Fill in
admin. doc. the third. Considering the optimal version of our sequence graph, we can
see that task Check payment reception is already in sequence at the topmost level of its
boundary: the body of the loop the structure. Thus, we can not make it more sequential.
Task Log information however, is in parallel of all the remaining tasks. It can consequently
be put in a new sequence node, inserted before, after, or between the two sequence nodes
composing the subgraph of the main graph. By moving task Log information this way, each
possible case will obtain the same stochastic worst-case execution time. Thus, the decision
criterion will be the absorbance of the process. Unfortunately, although reducing the spike
of requirements for resource admin to 3 parallel demands, the generated sequence graphs
all kept an absorbance of oo, because the two replicas of this resource remain requested
100% of the time. Thus, the last task making usage of this resource, namely, task Fill
in admin. doc., has to be sequenced. Similarly to task Log information, this task does
not belong to a conditional structure and can thus be placed at the top level of the main
sequence graph. However, to preserve its dependency with, for instance, task Deliver by
drone, it has to remain before the choice structure containing that task. Thus, it can be put
before or between the two sequence nodes composing the subgraph of the main sequence
graph. As for task Log information, the two possible graphs have the same stochastic
worst-case execution time. Their absorbance will then be used to pick the best one. The
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Figure 4.18: Refactored Process Returned by the Approach

one with the smallest absorbance! is the one in which both tasks Fill in admin. doc. and
Log information are put in sequence between the two nodes composing the main sequence
graph. This sequence graph is then converted to its equivalent BPMN process, represented
in Figure 4.18. Compared to the original process, the generated one obtains an AET of
571m (9h31m), which shows an optimisation of 25.5%.

4.5.5 Pros and Cons

This approach has several advantages and drawbacks that are discussed in this section.

Pros
The main advantages of this approach are:

— its efficiency, which is ensured by performing only static analyses of the processes,
thus avoiding the overhead caused by simulation;

— its computations and results regarding the pool of resources required by the process.
This allows not only to change the position of the tasks in the process, but also to
adjust—and in particular, reduce—the pool of resources so as to make it compliant
with the needs of the process.

! Actually, the one with the smallest numerator, as the denominator of the fraction is still 0.
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Cons
The main drawbacks of this approach are:

— its “one-shot” monolithic way of application. Indeed, the final BPMN process may
end up completely restructured, potentially decreasing the capacity of the user to
understand all the performed changes;

— its restriction to constant durations for tasks and IAT. In practice, it often happens
that a task does not have a constant duration, but a duration that may vary slightly
depending on its hidden parameters which make it inherently more or less complex
from time to time;

— its imprecision in case of resources overusage. As no simulation is involved, the static
analysis reaches some limitations when some tasks have to be sequenced. Indeed,
there is no guarantee regarding the fact that the process having the shortest execution
time, or the smallest absorbance, is the one obtaining the shortest AET.

4.6 Non-fixed Durations Step-by-Step Approach

The approach presented in this section differs from the previous one on two main aspects.
Unlike the previous approach, the one presented in this section does not apply the refac-
toring operations once and in a monolithic way, but step by step, each of them being
proposed and validated by the user. Consequently (s)he is more likely to understand the
changes made to the process, and thus the resulting one. The second difference concerns
the durations contained in the process, and more precisely the way in which they are repre-
sented. Indeed, we saw in the previous approach that only durations following a constant
distribution were supported, which had an impact on the tasks of the process, and on its
IAT. Moreover, this assumption was mandatory for the approach to work, as it allowed
us to know statically which tasks were executed at any given time of the execution of the
process. In this approach, we expand the support of the durations to any value following
a probabilistic distribution.

These two changes implied to rethink entirely the approach. Indeed, the fact that durations
are not constant anymore forces us to put aside any static analysis of the process, as these
durations are only known at execution time. Moreover, the integration of the user in the
loop at the key steps of the refactoring method implies a step-by-step modification of the
process, where the number of changes between two processes coming from two successive
steps must be minimal. This new version of the refactoring approach thus works the
following way: each task of the original process is moved one by one, so that the deviation
between two processes coming from two successive steps is minimal. The tasks of the
process are moved only once, thus ensuring the termination of the refactoring approach.
The user is solicited at two crucial steps of the approach: the choice of the task to move,
and the choice of the process to keep (the original one or the modified one). In these
two cases, the user can either validate the proposal, or decline it. If (s)he declines a task,
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Figure 4.19: Overview of the Approach

another task is proposed to her/him, provided that not all the tasks of the process have
already been moved. If (s)he declines a process, it is replaced by the previous process
(i.e., the one obtained in the previous step, or the original one if not steps were performed
yet). These steps are recalled in Figure 4.19. It is worth reminding that this approach
is entirely based on the refactoring patterns presented in Section 4.2. Thus, this section
only introduces the concepts specific to the given approach, without detailing the already
presented notions.

Running example. The running example used throughout this section is a version of the
BPMN process shown in Figure 4.1 where tasks have been given possibly non-constant
durations, unlike in the previous approach. It is given is Figure 4.20. For instance, the
duration of task Collect goods follows a normal distribution of parameters N (45, 5), mean-
ing that it will range approximately between 23m and 67m, with an average duration of
45m. Similarly, the inter-arrival time of the instances of the process can be non-constant,
and consequently follows a normal distribution of parameters N'(25,1.5). As durations and
IAT follow either constant, normal, or uniform distributions, the AET over 100 instances
of the process may vary significantly from one simulation to another. For this reason, the
100 instances of the process are simulated 100 times. The metrics of these 100 simulations
are then averaged, and used as basis for computation. Under these assumptions, the AET
of the original process is 750m (12h30m). A keen eye will notice that this duration is much
larger than the sum of the worst durations of the tasks of the process. This is due to the
fact that resource admin only has 2 available replicas for all the running instances, and
that several tasks are making use of it. Consequently, the instances will often have to wait
for a replica of resource admin to be released. This waiting time will, in the end, increase
the execution time of the instance, and thus the AET of the process.
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Figure 4.20: Running Example with Non-Constant Durations

4.6.1 Task Election

The first step of the iterated part of this approach consists in electing a task of the process
as candidate for the next move. This selection can be done in several ways: randomly,
greatest average durations first, greatest average durations last, greatest resources usage
first, greatest resources usage last, a mix of several criteria, etc. Based on our experiments,
we observed that the selection method giving the best results in terms of optimisation in
this context is the one selecting tasks by ascending order of average duration. The intuition
behind the good quality of this selection method resides in the fact that the duration of a
task is directly related to the targeted optimisation criteria which is the AET of the process,
and in the fact that the tasks of the process are moved once and only once. Consequently,
finding the best position of a task is crucial in order to reach the greatest optimisation.
However, the earlier a task is moved, the more its position will be subject to changes, due
to the shift of the remaining tasks. As tasks with longer durations have a greater impact
on the execution of a process than tasks with smaller durations, their position, once found,
has to remain as stable as possible. Thus, tasks with longer durations should be moved
later than tasks with shorter durations. Once a task has been selected, it is proposed
to the user. If the user accepts to move this task, the refactoring patterns presented in
Section 4.3 are applied to the task and its boundary in order to generate all the possible
abstract graphs corresponding to a different position of this task.

Example. Given the running example shown in Figure 4.20, the tasks Validate payment and
Send payment request will be moved first, followed by task Check payment reception, and so
on.
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4.6.2 Computation of the Best Refactoring Steps

Computing the best refactoring step given a task to move can be done in many different
ways. A naive—yet natural—way of computing it would be to generate all the possi-
ble processes corresponding to a different position of a given task using the refactoring
patterns presented in Section 4.3, and then repeating the operation on all the generated
processes, until all the tasks of the process have been moved. This option would generate
an arborescence of processes, whose leafs would represent all the possible dispositions of
the tasks in the process. Then, by comparing these leafs, we would be able to find the
process obtaining the shortest AET. Finally, by traversing the arborescence backward, up
to the original process, we would obtain the list of successive steps to apply to our pro-
cess in order to reach the optimal one. However, such an exhaustive exploration, despite
returning the optimal process, is not applicable in a real-time context. Concretely, for a
process containing 15 tasks and in which each task can have 20 different valid positions,
the corresponding arborescence would contain 152° = 3 x 10?3 leafs. As simulating a single
process takes at least milliseconds, simulating such an important number of processes is
not feasible in a reasonable time. Consequently, heuristics are required to reduce the size
of the arborescence, that is, its number of nodes.

Heuristics.

The idea of a heuristic is to explore efficiently the state-space, that is, the space of all
possible solutions. In our approach, not only the exploration of the arborescence is costly,
but also its construction, as it may end up containing billions of billions of nodes. Thus,
both the exploration and the construction of the arborescence must be bounded. Several
methods can be used to bound the exploration and the construction. A first option could
be to bound the construction of the arborescence to a given number of steps, after which
the process with shortest AET would be kept. Another option could be to keep several best
candidates at each step, based on a score attributed to each candidate. A third option
could be to try to make a structural analysis of the process, evaluating the balance of
parallelism and sequence in it, or its potential to be a good solution. Among the presented
ones and based on our experiments, the option giving the best trade-off between quality
of the result and execution time is the one in which several best processes are kept at each
step, their quality being based on a score attributed to each of them. This score is based
on the metrics obtained by simulating each generated process of the given step. Then, a
number n of processes obtaining the highest scores are kept and used as basis for the next
step.

The computation of the score is based on variations of two different metrics: the AET
and the resources usage of the process. It also makes usage of the metrics of the ancestor
processes of the current one to adjust the score. The AET is declined in three different
metrics: the AET mean difference, the AET standard deviation difference, and the AET
local difference.
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Definition 4.28 (AET Mean Difference). Let G,.1 = (Vii1, Eny1, 2ny1) be a BPMN
process generated at step m + 1, and let S¢ = {G1,...,Gp} be the sequence of BPMN
processes generated in the n previous steps. The AET mean difference of G,,11 is defined
as

Opapr(Gny1) = papr(Gr, ... Gr) — papr (G, ..., Guya)

where

1 k
MAET(Gh ceey Glc) = % Z AET(Gz‘>
i=1

Definition 4.29 (AET Standard Deviation Difference). Let Gpi1 = (Vii1, Eny1, Zny1) be
a BPMN process generated at step n+ 1, let Sg = {G1, ..., G} be the sequence of BPMN

processes generated in the n previous steps. The AET standard deviation difference of
Gpi1 1s defined as

5UAET(Gn+1) = O'AET(Gla ey Gn) - UAET(Gh ey Gn+1)

where

k
)y (AET(G;) — papr (G, ..., Gi))?
oanr(Giy .y Gi) = \| = L

Definition 4.30 (AET Local Difference). Let G, = (V,, E,,%,) be a BPMN process
generated at step n and let Goy1 = (Viat, Eny1, Yna1) be a BPMN process generated from
G,. The AET local difference of G, 11 is defined as

0apr(Gny1) = AET(G,) — AET(Gpy1)

The resources usage of the process is declined in two different metrics, namely, the resource
usage mean difference and the resource usage local difference.

Definition 4.31 (Resources Usage Mean Difference). Let G117 = (Vii1, Eny1, 2ny1) be a
BPMN process generated at step n + 1, let Sq¢ = {G1,...,G,} be the sequence of BPMN
processes generated in the n previous steps, and let P be the available pool of resources of
Gra1. The resources usage mean difference of G,11 is defined as

5/"1/7'55 (Gn—H) = ,Ures(Gla ceey Gn) - ,ures(Gla ceesy Gn-‘,—l)

where

G G) = - 1 20 3 (G

i=1reP

Definition 4.32 (Resources Usage Local Difference). Let G,, = (V,,, B, 2,) be a BPMN
process generated at step n, let Gyi1 = (Via1, Eny1, 2ny1) be a BPMN process generated
from G, and let P be the available pool of resources of G,1 The resources usage local
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difference of G,,11 is defined as

57"88( n+1 |P| Z p n+1 p<Gn)<T)

reP

These five metrics are then normalised in order to obtain a value between 0 and 1 for each
of them. Finally, the score of the current process is computed as the weighted sum of these
five metrics, proportional to the resources usage and inversely proportional to the AET.

Definition 4.33 (Score of a Process). Let G = (V, E, X) be a BPMN process, let
Ouppr> Ooaprs OAET, Op., and O be the five previously defined metrics computed on G,
and let WApT, Wres, Wiee € RT be the weights respectively attributed to the metrics based on
AFET, resources usage and local information. The score of G is defined as

SCOTQ(G) = WAET X (6MAET(G> +6UAET<G) + Wige X 5AET<G)) + Wres X ((5mes(G) + Wioe X 5reS<G))

The weights attributed to the metrics can be given by the user as an input of the approach.
If none are given, the default ones, based on our experiments, are w gr = 0.6, wj,. = 0.5,
wrs = 1.0. Once each graph of the current step is attributed a score, the n best ones,
where n is a parameter of the approach, are kept as best candidates for the next step. The
possible positions of a new task are then computed on these n processes, and so on, until all
the tasks of the process have been moved. Finally, the process obtaining the shortest AET
is elected as best process, and the sequence of intermediate steps necessary to obtain it is
computed backward, up to the current step. The immediate next step (i.e., new process)
is then proposed to the user, who can either accept or decline it.

Ezxample. Figure 4.21 presents two refactored versions of the running example shown
in Figure 4.20. The first one (Figure 4.21(a)) is the process obtained by applying the
aforementioned heuristic, while the second one (Figure 4.21(b)) is the optimal version of
the running example, obtained with a full generation and exploration of the arborescence.
The refactored process obtained with the heuristic has an AET of 502m (8h22m), which
represents a 33.1% of optimisation with regards to the original version. Interestingly, it
does not contain that much parallelism in it. Moreover, all the tasks requiring the same
resource were not put in parallel, e.g., tasks Fill in admin. doc. and Log information. For
these two tasks, it is likely to result from the stress of resource admin, which has only two
available replicas. However, for resource employee, this may be a trade-off between resource
usage and uselessness of adding parallelism, as the parallel branch containing tasks Collect
goods and Prepare parcel in sequence usually executes faster than the other parallel branch.
This example is a very good illustration of the quality of the heuristic, as, as the reader
can see in Figure 4.21(b), the refactored process returned by the full exploration (which
took several days of computation and generated approximately 300k processes) is strictly
identical to the one returned by the heuristic.
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4.6.3 Pros and Cons

This approach has several advantages and drawbacks that are discussed in this section.

Pros
The main advantages of this approach are:

— its step-by-step user-validated progression, which makes the user more likely to un-
derstand the changes happening to the process;

— its management of non-fixed durations, which makes it one step closer to reality as
it is able to model more realistic behaviours;

— its precision in the generated results. Indeed, thanks to simulation, the results com-
puted by this approach are very precise, which plays an important role in the quality
of the generated process;

— its efficiency, as the heuristics allow one to optimise processes powerfully in a very
short time.

Cons
The main drawbacks of this approach are:

— its involvement of the user, which may drastically lower the quality of the refactored
process, as (s)he may decline some tasks, or some key processes that do not seem
relevant for her/him;

— its lack of information regarding the optimal pool of resources required by the process
to run without latencies;

— its usage of simulation, which, in some not-so-edgy cases, may take a significant
amount of time to simulate a process sufficiently enough to provide reliable metrics.

4.7 Multi-Objective Approach

The last proposal that we made on this topic aimed at enlarging the scope of the refactoring
approach to multiple optimisation objectives. Indeed, it is frequent for a company to want
to optimise not only the execution time of its business processes, but also their resources
usages, or their costs. Moreover, these metrics are easily computable using the simulation
techniques already used in the previous section. It is worth reminding that this approach
is entirely based on the refactoring patterns presented in Section 4.2. Thus, this section
mostly presents the differences induced by the multiple objectives with regards to the single
objective case, without detailing the already presented notions.
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4.7.1 Multi-Objective Optimisation Problem

Generic Idea

A multi-objective optimisation problem, in opposition to a single objective one, is an
optimisation problem in which several parameters should be optimised. In this context, one
problem may admit several optimal solutions, each of them providing a better improvement
for some parameters, and a worse one for the others. Such solutions are called Pareto
optimal solutions. The quality of a solution is based on a criteria called Pareto dominance,
which states that a solution s Pareto dominates a solution s’ whenever all the parameters
of s are greater or equal to the parameters of s, except at least one parameter that is
strictly greater in s than in s’

Application to our Problem

In this context, an optimisation criterion is any criterion that can be computed using
simulation. In this thesis, we will focus on the AET of a process, its resources usage, and
its cost. Moreover, we slightly deviate from the original definition of a multi-objective
problem as it can be found in the literature, as we allow the weighting of the optimisation
criteria. This permits, in our opinion, some more realistic behaviours, where optimising the
AET of the process can be more important than optimising the usage of one given resource.
However, this requires an adjustment of the notion of Pareto dominance. Indeed, in this
context, a process may dominate another one even though some of its optimisation criteria
are lower than the ones of another process. For this reason, we define a notion of dominance
score that aggregates the values of the multiple optimisation criteria of the process into
a single value, which takes care of the prevalence of some criteria with regards to some
others, thus allowing a proper comparison.

Definition 4.34 (Dominance Score). Let G be the original process, let G, Ga be two
generated processes, and let C' be a set of optimisation criteria. Gy is said to dominate Gy
if and only if
c(Go) c(Go)
We X > ) we X
Z C(Gl) Z C(GQ)

ceC ceC

where w, is the weight of the optimisation criterion ¢, and ¢(G;) is an operator returning
the value of the optimisation criterion ¢ on the graph G;, i € {0,1,2}.

Example. The running example used in this section is the same than the previous section’s
one, that is, the one shown in Figure 4.20. The IAT also follows the same normal distri-
bution of parameters A/(25,1.5), and 100 instances of the process are being run. However,
here, several criteria of optimisation are driving the refactoring process, namely, its AET,
its cost, and its usage of resources admin, employee, and driver. Moreover, these criteria are
weighted, giving each a variable importance in the optimisation. The AET gets a weight
wapr = 30%, the cost a weight wg = 20%), the usage of resource admin a weight w, = 20%,
the usage of resource employee a weight w, = 20%, and the usage of resource driver a weight
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Wq = 10%

4.7.2 Task Election

The idea of task election presented in the previous section is not applicable anymore. In-
deed, this idea arose from two hypothesis: (i) classifying the tasks of the process could
be done based on a quantitative metric, and (ii) there was a single optimal version of
the process. Here, several optimisation criteria are considered. Thus, the optimisation
can be performed in several directions: focus on a single criteria, several of them, a bal-
ance between several, etc. Consequently, finding a statically computable metric usable for
classifying and comparing the tasks of the process becomes harder. Moreover, the overall
impact of a given task becomes more unclear, as a task may have a strong impact on some
criteria and a small one or none on some others. Regarding the second point, in such
context, we no longer have a single optimal version of the process, but several ones, called
Pareto optima. All these optima have different values for their optimisation criteria, yet
the same overall optimisation. These optimal versions are said to be on the Pareto front,
a curve providing the set of parameters values giving a maximal optimisation. For these
two reasons, comparing and assessing the impact of a task with regards to its siblings
becomes challenging, and does not show much interest in this approach. Thus, the task
election mechanism employed in this approach randomly picks the task to move. As far as
our experiments led us, this simplification does not impact the approach, as more complex
election mechanisms were obtaining the same results than the random one.

4.7.3 Generation of the Best Refactoring Steps

The generation of the best refactoring steps remained quite similar to the single objective
one. Indeed, when a task is elected, the refactoring patterns are applied on it so as to
generate all the possible positions of this task in the process. Then, the n processes
obtaining the best optimisation scores are kept as best candidates, and the refactoring
patterns are applied again on them, with a new task to move. However, similarly to the
task election phase, it became more complex to find good heuristics for traversing the
arborescence of solution efficiently, or to prune it. Thus, it became trickier to navigate
efficiently through this arborescence, and consequently to keep the best (or at least good)
candidates at each step. For this reason, we decided to discard the step-by-step approach,
which allowed us to remove the bound on the number of steps originally required for
termination. This gain of freedom allowed us to make use of several well-known algorithms
that we applied to our approach.

4.7.4 Optimisation Algorithms

Multi-objective evolutionary algorithms (MOEAs) are specifically designed to address such
optimisation problems by efficiently exploring the state space and maintaining a diverse
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set of non-dominated solutions. Throughout the years, well-known single objective op-
timisation algorithms which had proven themselves, such as hill climbing, or simulated
annealing [KGV83|, were slightly modified to support multi-objective problems. As a basis
of analysis, we make us of these two algorithms and apply them to our refactoring prob-
lem. The hill climbing algorithm iteratively applies refactoring operations to the current
process, and keeps the best version between the original and the refactored one. If the
two processes provide the same optimisation, the new one is kept in 50% of the cases.
The simulated annealing algorithm performs almost identically, except that it may keep a
solution that provides a lower optimisation than the current one (i.e., a worse solution),
so as to promote diversity. The probability of keeping such a solution decreases over time
according to a cooling schedule.

Another class of algorithms, named evolutionary algorithms (EAs) [Bac96], have proven
themselves as particularly effective in the field of multi-objective optimisation. Evolution-
ary algorithms are population-based metaheuristics inspired by natural evolution, using
mechanisms such as mutation, selection, and sometimes crossover to make a set of can-
didate solutions evolve over time. Well-known families of multi-objective evolutionary
algorithms include NSGA-IT [DPAMO02|, SPEA2 [ZLT01], SMS-EMOA [BNE07]|, AGE-
MOEA [Pan19], AGE-MOEAII [Pan22], ESPEA [BSS15], PAES [KC99], and others.

In this work, we leverage two MOEAs—NSGA-II and PAES—to explore the space of
refactored processes. Each individual in the population directly encodes a process model, as
in [Str17, BZS18], rather than a vector of parameters. A mutation corresponds to applying
a refactoring pattern (i.e., moving a task), with a 75% probability per individual. If the
mutated individual is worse than the original one, it is retained with a small probability
(5%) to promote diversity and avoid premature convergence. The population is initialised
with random mutations of the original process, and the algorithms maintain an archive (or
population) of non-dominated solutions throughout the search. The stopping criterion is
based on a fixed execution time. Comparisons between individuals use a non-dominance
criterion, aggregating objectives into a score to determine dominance.

NSGA-II [DPAMO02] is one of the most widely used and effective multi-objective evolution-
ary algorithms. Building on the general evolutionary principles described above, NSGA-II
distinguishes itself through its fast non-dominated sorting and crowding distance mech-
anisms, which help maintaining diversity and guiding the population toward the Pareto
front. While NSGA-IT typically leverages both mutation and crossover to explore and
exploit the search space, only mutation is applied in our context, due to the challenges
of defining meaningful crossover for process models. This adaptation may affect the al-
gorithm’s ability to fully utilise its strengths, but NSGA-II remains a strong baseline for
multi-objective optimisation in complex domains. In contrast, PAES [KC99| is a sim-
pler evolutionary algorithm that relies solely on mutation and maintains an archive of
non-dominated solutions to guide the search. The archive is updated whenever a new non-
dominated solution is found, and Pareto dominance is used to compare solutions. This
approach avoids premature convergence and helps approximating the Pareto front by en-
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suring diversity among solutions, making it particularly effective when crossover is not
available or not meaningful.

Finally, as a comparison basis, the fast algorithm presented in Section 4.6 is also used.
It slightly differs from its original version, as it now has to support multiple optimisation
objectives. To do so, it aggregates the metrics of the considered process in the form of a
score that is used for comparison. We recall that this algorithm moves the tasks of the
process only once, and keeps only the best solution at each refactoring step.

Example. As an example, let us show the BPMN process obtained by applying the NSGA-
IT algorithm to the running example. The process resulting from the refactorisation carried
out by this algorithm is shown in Figure 4.22. This process, reaching 31.7% of optimisation,
exhibits several interesting properties, similar to the ones presented in Section 4.6.

First, we can see that none of the tasks necessitating resource admin were put in parallel.
This can be explained by the important usage of this resource all over the lifetime of the
process, which is itself explained by the small number of available replicas of this resource
(2). Thus, it is likely that putting these tasks in parallel would have generated important
synchronisation delays compared to their sequential version.

The second interesting thing that can be noticed is that the tasks requiring the resource
employee never appear in parallel neither, even though 6 replicas of this resource are avail-
able. There might be several explanations for this to appear. A possibility is that, on
average, the other branch of the parallel gateway executing the tasks Collect goods and
Prepare parcel does not execute in less time than the other. Thus, putting the tasks Collect
goods and Prepare parcel in parallel would not lower the execution time of the process,
although increasing its pike usage of resource employee. Another possibility is that, due to
the IAT of the process in our example, more than three instances of it may be executing
at the same time, and more precisely, may be executing tasks Collect goods and/or Prepare
parcel at the same time. Consequently, the process would require more than 6 replicas of
resource employee at the same time. This would delay the execution of the tasks Collect
goods and Prepare parcel, and thus increase the AET of the process. The simplest solution
is thus to keep those two tasks in sequence.

4.7.5 Pros and Cons

This approach has several advantages and drawbacks that are discussed in this section.

Pros
The main advantages of this approach are:

— its handling of multiple objectives, which makes it one step closer to reality;
— its multiple types of bounds for the optimisation algorithms (number of iterations,
number of tasks, time, ...);
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Figure 4.22: Refactored Goods Delivery Process

— it handling of non-fixed durations.

Cons
The main drawbacks of this approach are:

— its impossibility to rely on well-suited heuristics to speed up the computations any-
more;

— its lack of, to the best of our knowledge and experiments, perfectly suitable optimi-
sation algorithm for navigating through the space of possible solutions, leading to
non-optimal results;

— its usage of simulation.

4.8 Conclusion

In this chapter, we have presented three different approaches aiming at tackling the problem
of optimising business processes. These three approaches have a common foundation, which
is the employed technique: process refactoring. All of them rely on refactoring patterns,
useful for providing strong semantics preservation guarantees. These approaches all have
their share of advantages and drawbacks, which are discussed at the end of their respective
sections. As a witness to their quality, and for the sake of experimentation, they were
all implemented and tested. The prototypes and the conducted experiments are detailed
respectively in Sections 5.3.1, 5.3.2, and 5.3.3 of this manuscript.
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Chapter 5

Tools & Experiments

“It doesn’t matter how beautiful your
theory s, it doesn’t matter how smart
you are. If it doesn’t agree with
experiment, it’s wrong.”

Richard Philips Feynman
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This chapter presents the various tools that were developed to perform experimental studies
for each approach presented in Chapters 3 and 4. It also presents the GIVUP tool [NS25],
which extends the BPMN modelling approach presented in Chapter 3 with verification
techniques. These tools represent in total approximately 45k lines of Java code. All the
experiments presented in this section were conducted on a HP EliteBook x360 1030 G8
Notebook PC running with an Intel Core 15-1145G7 @ 2.60GHz VPRO and 16GB of RAM,

unless otherwise stated.

5.1 Modelling of BPMN Processes

5.1.1 Tool

The approach presented in Chapter 3 has been entirely implemented as a tool written in
Java and consisting of approximately 12k lines of code. To facilitate its usage, the Java code
has been embedded in the backend of a web server which is freely available online, along
with the different datasets used.! The implementation details are given in Figure 5.1.
The user writes her/his textual description on the web application that is developed in
HTML, CSS, JavaScript and makes use of JQuery, Ajax and BootStrap. The description
is then transmitted to the backend written in NodeJS, which asks the Java program to send
the description to GPT. The expressions returned by GPT are transformed into a graph,
which is eventually converted into the resulting BPMN process following the multiple steps
detailed in Chapter 3. This process is finally rendered by bpmn.io?, and displayed in the
web application.

5.1.2 Evaluation

The evaluation presented in this section is separated in three different parts. The first one
consists in comparing the tool proposed in this approach to other tools coming from the
literature, and to LLMs prompted directly. The second one provides an analysis of the

'https://github.com/QuentinNivon/Text_to_BPMN
’https://bpmn.io/
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Component Prompt Content
A ent You are an expert in Business Process Model and Notation (BPMN), and
p
Role your role is to transform the textual description that will be given to
you as input between curvy brackets into the corresponding BPMN process.
Expected For readability, the format that you should adopt is a visual repre-
Output sentation, that you can display directly in your answer. You should
restrict yourself to the following elements of the BPMN syntax: tasks or
y g yI
Format activities, sequence flows, parallel gateways, and exclusive gateways.
Advice Of This means that our answer should not contain, for instance,
y
o inclusive gateways.
Undesired SR
Behaviour
Example Given the input {The goods must be packaged before being sent}, an
of Correct example of correct input could be:

Output | PackageGoods | --> | SendGoods |

Figure 5.2: Prompt Used for LLM Direct Usage

incorrect results obtained by this approach in order to understand the reasons leading to
the failure. The third one gives insights on the behaviour of this approach when the tasks
of the description given as input are not already named.

Tools Comparison

To the best of our knowledge, there are only two tools aiming at generating BPMN
processes from natural language descriptions available online at the moment: Pro-
MoAI [KBSvdA24b] and NaLa2BPMN [EAA*24]. Our tool was compared to them, and
also to Gemini [ea24a] and GPT-5 [ea24b] prompted with a rigorous prompt following the
best practices in terms of prompt engineering [Bro20, MIT23, MIST24, XYL"25], which
is given in Figure 5.2. The focus was made both on the accuracy of the results and on the
time taken by each tested tool to generate the BPMN process. 200 descriptions were used,
coming from various sources. 25% come from the literature (PET dataset [BvdAD'22]
and proceedings). The remaining 75% were handcrafted by 9 users (5 experts having be-
tween 3 and 15 years of experience with BPMN and 4 novices not used to BPMN) who
experimented the tool. All these examples contain tasks which were named beforehand.

The results of these experiments, presented in Table 5.1, are split into three different groups.
The first group, labelled with a tick, represents the processes that were considered as valid
by the two experts who analysed the results, called reviewing experts. Here, the notion of
validity relies on the correspondence between the expected process and the generated one.
A process is considered valid if it corresponds exactly to the expectations of the reviewing
experts, and thus, to the textual requirements.
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Table 5.1: Results of the BPMN Generation Experiments

| Tool/Model || v [ 7 [ X [ Avg. Ex. Time |
Our tool 83% | 9.8% | 7.2% 7.21s
NaLa2BPMN || 32.8% | 8.9% | 58.3% 68.7s
ProMoAI 50% | 8.7% | 41.2% 24.7s
Gemini 73.4% | 13.8% | 12.8% 7.67s
GPT-4-turbo || 69.8% | 19.3% | 10.9% 11.8s

The second group, labelled with a question mark, represents the processes that were consid-
ered as ambiguous by the reviewing experts. Such processes are considered as ambiguous
because, according to their textual description, one may generate several valid processes.
As a choice has to be done among the multiple valid processes, one of them is generated,
although it may not correspond to the expectations of the experts. For this reason, they
belong to the group of ambiguous processes. For instance, a simple sentence such as “I
want A and B and C” does not state how A, B, and C are related to each others. Thus,
putting them in sequence, in parallel, or partially in sequence and in parallel remains cor-
rect with regards to the description. Similarly, a sentence such as “I want A before B or
C before D” can be interpreted as a choice between “A before B” and “C before D”, or as
a sequence executing first A, then “B or €', and finally D. For this reason, such processes
have been separated from the others, but remain considered as valid.

The third and last group, labelled with a cross, represents the processes that were consid-
ered as invalid by the reviewing experts. Such processes are at least partially non-compliant
with the textual description. It is for instance the case when a non-ambiguous constraint
is missing (e.g., two tasks are not put in sequence although they should be), or erroneous
(e.g., two tasks are put in an exclusive choice instead of one after the other). Invalid pro-
cesses are generated when GPT is not able to extract a constraint described textually, or
when it misinterprets it.

The results of these experiments, provided in Table 5.1, showed that our tool obtains
the best results both in terms of generation quality (with 83% of well-formed processes)
and execution time (with an average execution time of 4.43s). Without much surprise,
the execution time of this approach grows as the textual description grows, and as the
number of generated expressions increases. Rather surprisingly, GPT-4-turbo and Gemini
obtained very good results, especially with regards to their low failure percentage. However,
the results obtained by the LLMs must be handled with care as they are very probably
overrated. Indeed, to the best of our knowledge and experiments, LLMs are not yet capable
of generating the XML code of a BPMN process correctly. For this reason, the LLMs were
asked to generate a textual representation of the BPMN process, which was then visually
analysed by the reviewing experts and used to compute the score of these models. As
generating the exact XML code adds an additional difficulty layer to the LLM, it is likely
that the results shown in Table 5.1 would be lower.
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Incorrect Results Analysis

Table 5.1 shows that our approach does not manage to generate the expected process in
7.2% of the cases, which corresponds to 14 of our examples. The second part of these
experiments thus consist in understanding the source of these mismatches, and quantify it.
Such incorrect processes are caused by expressions returned by GPT not reflecting exactly
the information contained in the description.

Table 5.2: Results of the Analysis of the 14 Incorrect Processes

Missing Added Modified
constraint | constraint | constraint
Total 9 17 6
Average 0.64 1.21 0.43

Table 5.2 summarises the results, given as a sum or an average. Column 1 shows the number
of missing constraints. A missing constraint represents a condition described textually, and
which does not appear in the generated expressions. For instance, if the description says
that two tasks should appear in sequence, but no such constraint appears in the generated
expressions, then there is one missing constraint. Column 2 gives the number of additional
constraints. An additional constraint, by opposition to a missing one, represents a condition
not described textually, but which appears in the generated expressions. For instance, if the
description does not specify any constraint between two tasks, but they appear in sequence
in the generated expressions, then there is one additional constraint. Column 3 presents the
number of modified constraints. A modified constraint represents a relationship between
two tasks that does not correspond to the one given in the description. For instance, if
the description expresses that two tasks should be mutually exclusive, but they appear
in sequence in the generated expressions, then there is one modified constraint. Row 1
describes the number of incorrect constraints obtained in total for each type, while row 2
represents the average number of incorrect constraints per process. Based on these three
notions, we studied the expressions returned by GPT for these 14 incorrect examples. This
table highlights a first interesting information which is that, even though being incorrect,
these 14 processes are rather close to the expected ones as they only contain a few missing
or incorrect constraints on average (approximately 2 incorrect constraints per incorrect
processes). It is also interesting to note that the prevalence of the possible errors is not the
same, as GPT has a tendency to add constraints between elements that are not constrained,
while it is less likely to miss a constraint or misunderstand (i.e., modify) it.

Results with Unnamed Tasks

The results shown in Table 5.1 present experiments carried out on descriptions contain-
ing tasks that were named beforehand. To go further in the analysis of this approach,
we decided to perform experiments on pure raw descriptions, in which the tasks were not
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named beforehand. These experiments were conducted on 50 successfully generated ex-
amples among the 200 ones presented in Table 5.1 (i.e., they belong to Column 1). These
examples were specifically chosen as they contain tasks which are not named meaninglessly
(e.g., A, BBBB, or Dummy). The approach failed to generate 8 of them, which shows a
degradation of 16% of the quality of the results when tasks are not named beforehand.

A deeper analysis of these examples allowed us to detect two main issues in the results
returned by GPT. The first one is that GPT often misinterprets some parts of the text,
thus leading to additional or missing tasks, which induce an incorrect process. The second
issue resides in the capacity of GPT to map two distinct portions of text to the same task.
Often, one introduces a task that has to be processed, and, later, references this task, as
it has to be executed again. In such cases, GPT sometimes misses the fact that these
two portions of text correspond to the same task, thus preventing the resulting process to
contain, e.g., a loop. Finally, we observed that, the larger the description, the more GPT
tends to make the aforementioned mistakes.

5.1.3 Threats to Validity

The experimental results presented in this section are inherently subject to threats. One
threat that we identified is strongly connected to the training dataset used to fine-tune
GPT. Indeed, this dataset was mostly handcrafted. This implies that, even though mak-
ing many efforts to avoid it, the writing style of the used descriptions might be rather
similar. As a consequence, it may be the case that descriptions written in a different style
are less well understood by GPT, leading to less representative BPMN processes. This
could potentially explain why GPT is sometimes performing better on some descriptions
compared to some others. To mitigate this phenomenon, we try to gather descriptions
coming from various sources, thus having different writing styles.

Another threat, somehow related to the previous one, is the size of the used datasets.
Even though trying to make them rather large and varied, building and/or gathering
textual descriptions and analysing them is tedious and time-consuming. Indeed, one must
not only find/build valuable BPMN processes, but also their textual description and the
set of expressions that should be produced by GPT. For these reasons, the training (resp.
validation) dataset is for now limited to roughly 400 (resp. 200) examples. However, one
of our main focuses is to keep growing these datasets.

5.2 Verification of BPMN Processes

This section presents an extension of the approach presented in Chapter 3, in which a pro-
cess can be generated from a textual description, and also verified according to a property,
also described textually. This contribution was thought as a tool, named GIVUP, which
stands for “Generatlon and Verification of Underspecified Processes”. GIVUP performs
the model checking of the generated BPMN process with regards to the generated temporal
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logic property, written in LTL. It then returns a verdict which is either True if the BPMN
process satisfies the property, or Fualse if the BPMN process violates the property. In case
of violation of the property, the verdict also contains a representation of the error, either
in the form of a counterexample of the property, or as the set of all counterexamples of the
property, or as a coloured version of the original BPMN process. These steps are recalled
in Figure 5.3.

5.2.1 Generation of Temporal Logic Property from Textual De-
scription

Based on the experiments conducted in the context of this work, we concluded that LLMs
have, for now, a very basic knowledge of temporal logics. Thus, generating an LTL property
matching exactly the expectations written by the user in natural language is a challenging
task. For this reason, GIVUP is for now recognising nine precise patterns, corresponding
to five LTL formulas, on which GPT was trained.

o Pattern 1 associates the textual input

“Tasks T}, Ty, ..., T,, must always occur”
to the LTL property
Y1 = /\ F T
i=1
which means that the T, Ts, ..., T,, must eventually be executed in one of the paths

of the process.
o Pattern 2 associates the textual inputs
“Tasks Ty11, ..., T, must follow tasks T, Ts, ..., T,, 7
and

“Tasks T}, Ty, ..., T,, must be followed by tasks T},.1, ..., T.”
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to the LTL property
p2=G(\/Ti= A\ FT)
i=1

j=n+1

which means that, in every state of the system, encountering a T' € {11, T3, ..., T}
must ensure the encountering of the 7},,1, ..., T, in one of the paths of the process.

Pattern 3 associates the textual inputs
“Tasks T4, T, ..., T,, must precede tasks T},.1, ..., T.”
and
“Tasks T},+1, ..., T, must be preceded by tasks 11, 15, ..., T},”
to the LTL property

z n
ps= N (G-T; v (\ T UTy))
i=n+1 j=1
which means that either the 7},,1, ..., T, never appear in the process, or they do not

appear before the T, Ts, ..., T,,.
Pattern 4 associates the textual inputs
“Tasks T1, Ts, ..., T,, must not precede tasks 1,1, ..., T,”
and
“Tasks T},11, ..., T, must not be preceded by tasks T, Ts, ..., T},”
to the LTL property

pr= N\ (G-T; v ((A\-T) WT)
i=n+1 j=1
which means that either the 7},.1, ..., T, never appear in the process, or the 77, T5,

..., T), never appear before them.
Pattern 5 associates the textual inputs
“Tasks T}, 11, ..., T, must not not follow tasks 11, Ts, ..., T;,”
and
“Tasks T, Ty, ..., T, must not be followed by tasks T},.1, ..., T,”
to the LTL property

n z

s = NG, = N\ —F1Tj

=1 j=n+1
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which means that, in every state of the system, either the T}, T5, ..., T}, never appear,
or the T},11, ..., T, can never appear afterwards.

These patterns were used to fine-tune GPT in order to make it able to generate the correct
property in these precise cases. This fine-tuning task was performed on approximately 260
descriptions of properties, with roughly the same number of descriptions (~ 30) for each
available pattern.

5.2.2 Verification of the Property

At this stage of the approach, we have a BPMN process, obtained by the approach presented
in Chapter 3, and an LTL property exhibiting a desired behaviour of the process. The next
step thus consists in model checking the BPMN process with regards to the property in
order to assess its validity. However, model checkers do not natively support the BPMN
format as input. Thus, the process first has to be transformed into a format compliant
with classical model checkers, which is, in this approach, an LTS.

VBPMN [KPS17] is a tool allowing one to translate a BPMN process into LNT [CCGT11],
a modern formal specification language that combines traits from process calculi, functional
languages, and imperative languages. An LNT specification can then be mapped to its
equivalent LTS representation using the CADP toolbox.

As CADP does not natively support the LTL language, the LTL property must be converted
into a format that it can understand. This format is a Biichi automaton [Biic66], whose
generation is ensured by the SPOT toolbox [DLRC*22]. The Biichi automaton is then
converted into an LTS by internal scripts. These internal scripts are also in charge of
creating an EXP 2.0 file [Lan05], detailing how to make the synchronous product of the
LTSs representing respectively the BPMN process and the LTL property. Finally, these
scripts create another script, written in the Script Verification Language (SVL) [GLO1],
which gives directives to CADP on how to verify the property on the process.

5.2.3 Diagnostics

The verification of the property by CADP leads to a verdict, which is either True if
the property holds on the given specification, or Fualse if the specification violates the
property. In the latter case, CADP returns a diagnostic in the form of a counterexample.
This counterexample is a trace of the LTS that violates the given property. However, a
counterexample is often not sufficient to show precisely the source of the violation of a

property.

Ezxample. Let us illustrate the first diagnostic with the BPMN process used in Chapter 4
and the property G —Send payment request V (—Prepare parcel W Send payment request)
meaning that task Prepare parcel should not happen before task Send payment request. The
property is violated in the original BPMN process because both tasks are in parallel, thus
their order of execution can not be ensured. In this case, GIVUP returns a counterexample



128 Chapter 5. Tools & Experiments

Fill in Collect Prepare Send payment
admin. doc. goods parcel request
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Log Deliver by Validate payment

information drone payment reception
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Figure 5.4: Example of Counterexample Returned by GIVUP

which is a trace of the LTS corresponding to the process that violates the property. It is
shown in Figure 5.4. As the reader can see, in the counterexample, the task Prepare parcel
precedes the task Send payment request.

Counterexample LTS

In addition to the counterexample returned by CADP, GIVUP provides an additional
debugging option, called counterexample LTS or CLTS. This notion, introduced in [BLS17],
basically consists in an LTS containing all the traces of the process that violate the property
(i.e., the counterexamples), instead of the single one returned by the model checker. With
this representation, the user is more likely to find the source of the error, or to understand
the global impact that this error has on the model. Although being very helpful to localise
the source of the error, the CLTS may remain difficult to interpret or understand for a user
that is not familiar with the notion of LTS, due to its lack of similarity with the initial
BPMN process.

Example. The CLTS returned by GIVUP according to the previous example is given in
Figure 5.5. As the reader can see, this representation is more expressive than a single
counterexample. The brown state in sparsed dots describes a decision point after which
the property can be either satisfied or violated. If the task Send payment request is executed,
the property is necessarily satisfied (reason why state 3 is in green dashed line). On the
other hand, if the task Prepare parcel is executed, the property is necessarily violated,
whatever happens next.

Coloured BPMN

For users accustomed to BPMN, the CLTS representation, although giving more details
on the error than the counterexample, may be insufficiently explanatory. For this reason,
we provide a third and last debugging option, called coloured BPMN process. This notion,
introduced in [NS22|, represents directly on a BPMN process the violation and/or the
satisfaction of a property by colouring the parts of the model satisfying the property in
green, and the ones violating it in red. The coloured process is as syntactically close
as possible to the original process, and aims at helping users not familiar with LTSs to
understand the reason behind the violation of the property.
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Figure 5.6: Example of Coloured BPMN Returned by GIVUP

FExample. Figure 5.6 shows the coloured version of the running example BPMN process,
according to the property. As the reader can see, it slightly differs from the original one.
To represent the violation of the property, the parallel split gateway following task Collect
goods had to be transformed in its semantically equivalent mutually exclusive version,
otherwise it could not have been coloured. The fact that one of the parallel branch contains
a loop also explains the unusual structure of the green part of the model, as task Prepare
parcel can be executed at several possible moments. Finally, it is worth noticing that,
unlike in BPMN, LTSs contain labels on their edges. Thus, an LTS representation of a
BPMN loop first contains the first executable task of that loop, followed by the loop itself,
starting from its second node. Here, it is symbolised by the fact that, in both red and
green paths, the first occurrence of task Send payment request is before the loop.

5.2.4 Implementation

The GIVUP tool consists of approximately 20k lines of Java code (12k for the generation
of the BPMN process and 8k for the verification), which were embedded in the prototype
described in the previous section. The UI of the tool is presented in Figure 5.7. It can
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roughly be divided in an upper part and a lower part. Figure 5.7(a), representing the
upper part, is composed of 7 core components.

Component 1 is the password field. Usually, LLM-based tools are equipped with an “API
key” field, in which the user should input its own API key. However, in our approach,
we make use of a fine-tuned version of a GPT model. Such models are accessible only by
their owners, requiring their own API key. As hardcoding my own API key would allow
a free use of the website, I decided to limit its usage by using a password and quotas.
Component 2 is the business process description field. As the reader can see, the user can
either generate the business process from a textual description, or upload it if he simply
wants to verify it. Similarly to component 2, component 3 is the temporal logic description
field. Again, the property can either be generated from a textual description, or uploaded.
Then, component 4 submits the request to the server, which is in charge of managing it. It
can either contain a BPMN process or a description of it, and a temporal logic property or a
description of it. The click on this component triggers component 5 to eventually show the
BPMN process or a generated graphical version of its description. Components 6 and 7 are
respectively utilised for resetting the whole view, or for downloading the generated process
and property.

The below part is itself in charge of displaying the information regarding the validity of
the property. It is composed of 6 main components and shown in Figure 5.7(b). Here,
component 1 is in charge of displaying the information regarding the validity of the prop-
erty. It is red if the property is violated, and green if it is satisfied. Components 2, 3 and 4
are respectively used to display the different representations of the error, if any. The first
one shows the counterexample representation, the second one the CLTS, and the last one
the coloured BPMN process. These three representations are displayed in component 5.
Finally, the user can indicate its satisfaction of the result by using component 6.

5.2.5 Validation

To evaluate the approach, several experiments were conducted. These experiments are
divided into two parts: quality of the generated LTL property, and performance of GIVUP.

Quality of the Generated LTL Property

In this approach, the generated LTL property must correspond exactly to the textual
description written by the user. Otherwise, the verification step becomes useless, as the
behaviour assessed by the model checker is not the expected one. To obtain the desired
property, GIVUP currently restricts the user by forcing her/him to choose between the nine
well-defined patterns in Section 5.2.1. On these nine patterns, the properties generated
from one hundred examples were all correct.
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Table 5.3: Results of the Performance Experiments Conducted on GIVUP

BPMN | Prop. Model | CLTS | BPMN

BPMN Process States | Trans. || Gen. Gen. | Check. | Cons. | Colo.

Time Time Time Time Time
Evisa Application [Sal22] 30 31 1.67s | 1.43s | 4.35s | 3.12s | 613ms
Patient Diag. [BZOW19| 38 40 2.71s | 1.14s | 4.57s | 3.29s | 661ms
Employee Recrui. [FSZ21] 39 40 1.89s | 1.33s | 4.57s | 3.22s | 830ms
Employee Hir. [DRS18a] 78 105 2.17s | 2.86s | 4.34s | 3.22s | 758ms
Perishable Goods [VTS22] 108 150 222s | 1.1s | 4.78s | 3.31s | 978ms
Account Open. [NS22] 304 657 2.31s | 1.23s | 4.56s | 4.23s | 1.42s
Hardware Retail. [FSZ22] 373 819 2.56s | 1.1s | 4.53s | 3.13s | 764ms
Online Shipp. [KPS19] 375 765 2.78s | 1.07s | 5.12s | 3.27s 1.7s
Handcrafted 1 279k | 1.63m || 3.25s | 1.07s 8s 14.6s | 17.2s
Handcrafted 2 1.67m | 1lm 1.79s | 1.27s | 23.9s | 5.42m | 24m
Handcrafted 3 10m 75m 1.67s | 1.18s | 3.05m | >1h >1h
Handcrafted 4 60m | 503m || 2.08s | 867ms | 27.7m | >1h >1h
Handcrafted 5 362m | 3.32b || 2.31s | 1.85s | >1h | >1h >1h

Performances of GIVUP

The second part of these experiments aimed at assessing the scalability of GIVUP. They
were conducted on both real-world examples coming from the literature, and handcrafted
examples. Table 5.3 summarises the results. Column 1 provides the origin of the process,
Columns 2 and 3 give details about the LTS corresponding to the specification (i.e., number
of states and transitions of the LTS corresponding to the BPMN process), and Columns 4,
5, 6, 7 and 8 present the time taken by each major step of the approach to complete (i.e.,
generation of the BPMN process, generation of the LTL property, model checking of the
property, construction of the CLTS, and colouration of the BPMN process).

These experiments show that the total execution time including the non-mandatory steps
(CLTS construction and BPMN colouration) never exceeds 15s for real-world examples®.
The mandatory steps are themselves executed in at most 10s for real-world examples. For
the model checking step, the first limitations appear for processes containing approximately
10 million states, as CADP takes a few minutes to compute the result. This limit corre-
sponds to the well-known state explosion issue that CADP (and all model checkers) suffers
from. For the CLTS generation, the limit is reached earlier. Indeed, the construction of
the CLTS requires the computation of all the counterexamples of the property, which im-
plies repeating the model checking step multiple times, thus summing its execution time.
Finally, to be able to colour the BPMN process, an intermediate step called unfolding is
required. Unfolding consists in duplicating each node of the BPMN process having more

3The reader testing GIVUP may experience longer execution times due to the distance from the server
hosting it.
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than one incoming flow until no such node exists in the process. Consequently, this step
increases exponentially the number of nodes of the process, making the colouring process
longer than the CLTS generation. However, it is worth noting that, in practice, the LTS
model of a BPMN process rarely exceeds a few thousand states, and therefore almost never
suffers from any of the aforementioned issues, thus ensuring a short execution time.

5.3 Refactoring

In this section, we will focus on the tools built around the refactoring approach, and
their corresponding experiments. There are three tools, each corresponding to one of the
approaches presented in Chapter 4, which roughly consist of 25k lines of Java code. The first
one deals with the fixed durations approach, and thus performs the refactoring in a one-shot
manner by applying the successive steps presented in Section 4.5. The second one deals
with the non-fixed durations step-by-step approach, and thus performs several successive
refactoring steps, each of which is validated by the user using the tool, as described in
Section 4.6. The last one deals with multiple optimisation criteria, and is rather similar to
the second one, except that the user is no longer involved in the loop. It corresponds to
the description made in Section 4.7.

5.3.1 Fixed Durations Approach

For the fixed durations approach, the tool was written in Java and consists of approximately
10k lines of code. It has been tested on various handcrafted and real-world examples found
in the literature. The experiments allowed us to evaluate our approach both in terms of
usefulness and performance, by considering the gain of the optimised processes in terms
of AET, and the time taken by the tool to execute. The number of instances for each
considered process varies between 20 and 100.

Table 5.4 summarises these experiments. Column 1 gives the name of the process and its
origin. Columns 2, 3 & 4 show several characteristics of the process (number of nodes,
flows, types of resources, replicas of resources, IAT). Columns 5 & 6 provide respectively
the AET of the initial process and of the optimised process. Column 7 shows the gain that
was obtained by optimising the process. Column 8 states whether the available pool of
resources is sufficient to execute the optimal version of the process or not. Column 9 gives
the time taken by the tool to execute.

The results can be split into two parts: the processes having enough resources to execute
the optimal version of the process, and the others. In the first case, the AET of the
generated process is optimal, and is generally a significant improvement of the initial one
(up to 46% for the first process). A lower gain only indicates that the initial process was
already syntactically close to its optimal form, not that the approach does not perform
well. In the second case, the gain is lower than in the first case (up to 15.5%), due to the
decrease of parallelism induced by the sequencing of some tasks. Overall, the tool executes
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Table 5.4: Results of the Experiments Conducted for the Fixed Durations Refactoring
Approach

Types Init. | Final . . .

BPMN Process 1\;?2@85/ Ngribe/r IAT || AET | AET ((;%l)n g:sl frfslf
of Res. (UT) | (UT)

Perish. Goods [VIS22] || 24/26 | 9/17 | 6 || 26 | 14 | 462 | < | 563
Employee Hiring [DRS18a] || 19/21 | 7/12 3 30 18 | 40.0| v | 607
Trip Organisation [DS22] || 11/11 | 6/11 7 41 28 | 317 | v | 588
Patient Diag. [BZOW19] || 14/15 | 4/12 | 20 || 61 | 46 | 246 | « | 624
Shipment Process [FSZ22] || 16/18 | 5/10 5 46 | 42 [ 870 | v || 531
Evisa Application [Sal22] || 11/11 | 3/7 5 8 | 71 | 155 X 797
Employee Recruit. [FSZ21] || 14/14 | 7/11 5 92 80 | 13.0 | X 873
Account Opening [NS22] || 22/25 | 6/17 8 67 | 63 | 597 | X 732
Goods Delivery [DFR22] || 11/12 | 6/16 1 8 | 7T | 128 X 696

in less than 1s on real-world processes, which is satisfactory as this approach is executed
at design time.

5.3.2 Non-fixed Durations Step-by-Step Approach

This subsection gives details about the tool support of the non-fixed durations single ob-
jective approach, and describes the experiments conducted to evaluate and validate it.

Tool Support

The approach has been fully implemented as a tool written in Java which consists of
approximately 15k lines of code. For distribution purposes, it was embedded in a JAR
file that executes in the backend of a NodeJS server running locally. It is freely available
online?. Tt has been fully tested and evaluated on several real-world examples and hundreds
of handcrafted examples. Figure 5.8 shows two screenshots of the frontend of the web server
that the user can use.

In Figure 5.8(a), the user has uploaded her/his BPMN process, the global information (IAT,
available resources, number of instances) and the dependencies of the process (step 1). The
BPMN process is then displayed using the bpmn.io APT® (step 2), and the tool proposes
the first task to move to the user, i.e., task Validate payment (step 3). It also asks the user
whether (s)he agrees to move this task or not (step 4). If the user accepts, the tool then
computes the best position of this task (step 5), and displays it on the screen, as shown in
Figure 5.8(b). Otherwise, it proposes another task until the user accepts to move a task.
Here, as the user accepts, the resulting process is shown, and the gain of this new process

“https://quentinnivon.github.io/pages/softwares.html
Shttps://bpmn.io/
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Figure 5.8: Screenshots of the Tool Support of the Approach

compared to the previous one is displayed (step 6). The user is finally asked to accept or
decline this new process (step 7), which triggers, in both cases, a new iteration.

Experiments

The experiments described in this section aim at assessing the performance of the tool, as
well as the quality of the process returned by the score-based heuristic in terms of AET. To
do so, the results obtained by the heuristic are compared to the ones obtained by the full
exploration on several BPMN processes executed 100 times with multiple resources, both
in terms of AET and computation time of the tool. The results of this analysis are given in
Table 5.5. The columns present the considered BPMN processes with their name and their
origin. The lines are separated into three blocks. Block 1 contains the characteristics of the
original process, namely, its number of tasks, choice structures, dependencies, and its AET.
Block 2 provides the results of the refactoring operation obtained by using the heuristic
presented in Section 4.6.2. The information is given as the AET of the refactored process,
the gain (in percents) compared to the original process, the time taken by the refactoring
operation to complete, and the time taken by each step to complete. Finally, block 3 gives
the AET and the gain of the optimal version of the original process obtained with a full
exploration of the state space. The star symbol (*) in line 5 (AET) highlights cases where
the fourth generation pattern (Definition 4.18) was (at least partially) discarded due to the
important number of generated processes. It is worth noting that, as these results aim at
assessing the performance of the tool and the quality of the heuristic, they were performed
under the assumption that the user accepts all the steps that were proposed to her/him.
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Evisa | Empl. [Patient|Empl.| Acc. Per. |Online| Hand- | Hand- | Hand-
App. | Rec. | Diag. | Hir. | Op. | Goods | Ship. |Crafted|Crafted|Crafted
[Sal22]|[FSZ21]| ¢ T O|[NS22]|[VTS22]| 8 1 2a 2b

s Tasks|| 9 10 8 | 11 ] 15 16 24 | 26 51 51
Q
<
E®, | 1 1 2 2 2 2 3 4 1 1
& Deps.| 3 9 3 T 7 10 27 | 43 43 23

AET | 36.1 | 30.9 67.2 | 24.7 | 51.9 15 85.9 232 323 323

AET 20 21.4 61.6 19 40.9 13.2 70.3 | 145%* 244* 182%*
Gain || 44.6% | 30.7% | 8.33% (23.1%|21.2% | 12.0% |18.2% | 37.5% | 24.5% | 43.7%
Z Time|| 6.21s 328 5s 26s |1.25m 14s 1.97m| 6.37m | 58m 2.12h
Wiime || 0.88s | 0.32s | 0.56s |2.36s| 5s 1.75s 4.9s 15s 1.14m | 2.54m

1C

rist

H

AET | 17.1 | 204 60.4 | 17.8 | 34.2 13.2 69.3 122 183 99
Gain || 52.6% | 34.0% | 10.1% |27.9%|34.1% | 12.0% |19.3% | 47.4% | 43.3% | 69.3%
Time |[17.0m | 7.38m | 11.2s |43.1h | 26.8h | 1.34h | >14d | 1.7d | >14d | >14d

Full

Table 5.5: Results of the Experiments Conducted for the Non-fixed Durations Step-by-step
Refactoring Approach

As the reader can see, the heuristic performs very well on real-world examples, as it returns
processes with an AET close to the optimal one (and even the optimal one for example 6).
The worst result obtained by the heuristic on real-world examples is for example 5, for
which the gain of the heuristic is 33.5% worse than the gain of the full exploration. On
average, the heuristic performs only 13.9% less well than the full exploration, while being
much faster. The approach also performs in reasonable time on real-world examples, with a
time per step reaching 5 seconds at most. On the first handcrafted example, containing 26
tasks, the approach still obtains a non-negligible gain of 37.5% in a reasonable time per step
(15s). Finally, the approach shows some limitations on the last two handcrafted examples,
which are two variants of a 51 tasks process with a different number of dependencies, and
for which the execution time per step is no longer acceptable in a real-time context (more
than 1m). It is worth noting that, as expected, the number of dependencies and the size
of the process play an important role in the computational time of the approach.

5.3.3 Multi-Objectives Approach

This section presents the experiments that were conducted in the scope of the multi-
objectives refactoring approach presented in Section 4.7. This approach partly relies on
the jMetal framework [DN11]. jMetal is an open source Java-based framework for multi-

6[BZOW19] was placed here to ensure a proper rendering of the table.
"[DRS18a] was placed here to ensure a proper rendering of the table.
8[DRS19] was placed here to ensure a proper rendering of the table.
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Figure 5.9: Comparison of the Selected Algorithms per Example

objective optimisation with metaheuristics. It includes a wide set of resources, including
state-of-the-art multi-objective algorithms, solution encodings, benchmark problems, qual-
ity indicators, and utilities for performing experimental studies. The whole approach has
been fully implemented and consists of roughly 15k lines of Java code (2.5k for the jMetal
implementation, 7k for the refactoring approach, 1.5k for the simulation and the remaining
4k for the handling of the BPMN notation). The approach was also tested on a hundred
of handcrafted examples and a dozen of real-world ones, whose results will be presented in
the next sections.

Process Refactoring Algorithms Evaluation

In this section, we compare the evolutionary algorithms presented in Section 4.7.4. As a
witness of quality, we also compare them to the fast algorithm presented in Section 4.7.4,
that is expected to provide quickly a (less valuable) result. These algorithms were compared
on both synthetic and real-world examples.

Synthetic Examples.

The first set of experiments conducted consisted in assessing whether some of these algo-
rithms were more suitable than the others to the refactoring problem, i.e., if they were
computing better solutions. In an attempt to compare the algorithms as fairly as possible,
all the algorithms were executed with a maximum execution time as stopping criterion.
Moreover, these experiments allowed us to analyse the behavior of these algorithms over
time, and conclude on a time bound giving the best trade-off between quality of the re-
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sulting process and execution time.

Even though dominance is the most common way of comparing two solutions, it does not
fit well in our case. Indeed, despite the fact that the usage of a specific resource is relevant,
clearly the AET or the cost may have a higher impact on the process. Indeed, we observed
that “better” solutions were being discarded because they were not dominant, even though
they had a better AET or cost. So, we decided to use a weighted sum of the criteria to
compare the solutions. The following weights were used: 30% for AET, 20% for cost, 20%
for Ry usage, 20% for Ry usage, and 10% for R3 usage. As we will see below, the use
of this weighted sum will also allow us to compare the results of the algorithms with the
original process, and to compute the percentage of optimisation of the resulting process
with respect to the original one.

These experiments were conducted on 100 randomly generated examples and repeated 20
times for stability. The results are shown in Figure 5.9.° The figure shows the average
optimisation percentage per algorithm. The optimisation percentage of a process is the
weighted sum of the optimisation percentages of all of its optimisation criteria.

We can observe that the algorithms obtaining the worst performances are hill climbing
and simulated annealing, which do not explore the state space as efficiently as the others.
Indeed, they provide either no improvement or a very small one. The best algorithms are
NSGA-IT and PAES, which both achieve a good optimisation percentage. The optimisation
fluctuates between 0% and 80%, depending on the example. The fast algorithm performs
surprisingly good, outperforming the hill climbing and the simulated annealing algorithms,
but not reaching the performance of NSGA-II and PAES in most of the cases. It is
worth noting that the fast algorithm still outperforms both NSGA-IT and PAES on some
examples, which is a good indicator that the refactoring patterns are effective in improving
the processes. In fact, there should be no reason why a task should be moved more than
once. The key seems to be the order in which they are moved, which may be unrelevant in
some cases, even though crucial in others. What is very significant is the time consumed by
the different algorithms. Even though we will present execution times for the examples in
the next section, the fast algorithm executes in a few seconds, while the other algorithms
take several minutes to complete. As already pointed out, the execution time of the four
remaining algorithms was bounded to 5 minutes.

Real-World Processes Evaluation.

The second part of these experiments consists in evaluating the quality of the approach
on examples coming from the literature. These experiments were conducted on eight
examples, including the running example of Section 4.6. For each example, several criteria
of optimisation were taken into account, namely, the AET, the cost, and the average usage
of three resources (named R;, Rs, and R3 for homogeneity).

9The examples in Figure 5.9 were sorted from lowest optimisation percentage to greatest optimisation
percentage to facilitate their interpretation.
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Table 5.6: Results of the Experiments Conducted on the Multi-objectives Refactoring
Approach

Goods | Evisa | Empl. |Patient| Empl. | Acc. |Perish. | Online

Deliv. | App. | Rec. | Diag. |Hiring®|Open.*|Goods™| Ship.

(Ex. 4.6)|[Sal22] |[FSZ21]| 'O 1 1[NS22]| ' [[DRS19]

3 Tasks 7 8 10 8 10 12 13 24
ZX./®, /| 1/0/1 |1/0/0] 1/0/0 | 2/0/0 | 1/1/0 | 2/1/1 | 2/0/1 | 3/1/3
S Deps. 9 3 9 3 12 7 20 27

<

£ IAT (UT) 3 5 5 20 3 12 6 25
O  Ri/Ry/Rs 1/2/4 |5/2/3| 2/1/2 | 4/3/5 | 5/5/4 | 3/2/1 | 2/3/1 | 2/2/3
AET (UT) 750.8 | 159.6 | 25.0 | 58.7 | 575.6 | 67.8 | 20.8 | 98.9

= Cost 691.4k | 85k | 174k |652.5k | 542.4k | 177.5k | 243.8k | 1.131m
2 R usg. 97.7% |30.0% | 67.0% | 33.6% | 13.9% | 80.7 | 81.4% | 70.4%
S R, usg 52.6% |97.9% | 19.1% | 63.2% | 4.19% | 19.6 | 19.0% | 74.9%
Rs usg. 56.4% |23.9% | 95.7% | 12.3% | 4.38% | 50.8 | 16.3% | 34.3%
AET (UT) 520.8 | 130.1 | 16.8 | 46.9 | 512.5 | 47.7 | 184 | N/A
Cost 696.8k | 82.4k | 171.1k | 650k |493.4k | 172.9k | 242.9k | N/A

— Ry usg 96.6% |30.2% | 68.1% | 33.3% | 14.0% | 79.1% | 80.7% | N/A
£ Ry usg. 52.1% | 98.3% | 19.5% | 62.7% | 4.30% | 19.8% | 19.2% | N/A
§ Rs usg. 55.0% |23.0% | 97.3% | 12.3% | 4.86% | 50.4% | 16.3% | N/A
Gain 34.2% [25.3% | 31.0% | 22.9% | 19.5% | 31.5% | 13.0% | N/A

Time 5.74d |17.0m | 7.38m | 11.22s | 43.1h | 26.8h | 1.34h | >14d

AET (UT) 5285 | 153.6 | 17.0 | 50.9 | 571.7 | 50.6 | 185 | 84.1

- Cost 691.4k | 84.8k | 170.7k | 650.9k | 539.7k | 174.1k | 242.9k | 1.124m
= Gain 30.2% [3.73% | 30.4% | 13.3% | 1.07% | 24.5% | 11.3% | 13.6%
Time 7.8s 2.43s | 5.80s | 2.63s | 3.35s | 2.46s | 6.86s 55.7s

£ AET (UT) 716.7 | 1423 | 245 | 57.7 | 529.3 | 625 | 204 | 98.1
5 Cost 687.1 | 82.3k | 174.2k | 652.7k | 511k |176.7k | 243.7k | 1.132m
= Gain || 5.57% |15.5% | 2.44% | 7.34% | 13.1% | 13.7% | 2.79% | 2.44% |
< AET (UT) 7172 | 141.9 | 243 | 57.7 | 5234 | 622 | 204 | 976
§ Cost 686.5k | 82.5k | 173.9k | 652.3k | 508.5k | 176.8k | 243.8k | 1.131m
& Gain | 6.01% [15.8% | 2.83% | 7.92% | 14.3% | 13.5% | 3.4% | 2.67% |
o AET (UT) 526.5 | 142.0 | 16.8 | 46.3 | 516.6 | 445 | 182 | 86.5
= Cost 696.4k | 82.2k | 170.9k | 649.5k | 503.8k | 173k | 242.9k | 1.126m

[al)

Gain | 31.7% |16.4% | 31.4% |24.6% |16.2%|33.9%| 13.0% | 12.8% |

= AET (UT) 569.6 | 140.7 | 17.7 | 479 | 5209 | 46.3 | 18.7 | 87.6
it Cost 691.6k | 82.4k | 171.5k | 649.9k | 505.9k | 173.7k | 243.1k | 1.127m
z Gain | 25.5% [17.4%| 28.3% |24.4%| 13.7% |34.7%| 11.7% | 12.3% |
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The table shows the results of running the fast, the hill climbing, the simulated annealing,
the NSGA-II, and the PAES algorithms on these eight processes. As a reference, the
results of a full exploration algorithm are also shown in Table 5.6 (Optimal). The table
is organised as follows: Each column corresponds to one of the 8 examples used, with the
running example in column 1 (Goods Deliv.). Notice that some examples are followed by
an asterisk (columns 5-7), indicating that these examples have been simplified in order to
make the computation of their optimal version possible in a reasonable time. To illustrate
the time complexity, the example in column 8 (Online Ship.) was left unaltered and ran
for 2 weeks before the computations were halted without yielding a result.

The rows are split in 8 blocks.

« Block 1 (Description) contains indicators on some of the structural features of the
considered process to wrasp an idea of its complexity, namely, its number of tasks,
its number of choice, parallel and loop structures, its number of dependencies, and
the parameters that were used to simulate it, namely, the IAT, and the number of
available replicas of each resource Ry, Ry, and R3. The number of instances (100),
being identical for each process, is not displayed.

« Block 2 (Original) presents the metrics obtained by the original process for each
considered optimisation criterion. These metrics are shared with the 6 remaining
blocks, where the results for each of the four exploration algorithms are shown.
Please, note that since the cost is calculated as the cost of the resources used along the
execution, and therefore depends on the execution time and resource usage, resource
usage values are not shown for the different algorithms to allow the table to fit into
one page.

 In block 3 (Optimal), the metrics of the optimal process are given, along with the
percentage of optimisation compared to the original process, named Gain, and the
time taken by the algorithm to compute the solution.

 Blocks 4 to 8 (Naive, Hill Climbing, Simul. Anneal., PAES, and NSGAII) show the results
obtained by the corresponding algorithms. The last four blocks were executed using
their jMetal implementation, with a soft bound of 5 minutes, which means that the
algorithm is not immediately killed once the bound is reached, but it is allowed to
terminate its current iteration.

We can observe several interesting results from this table. First, one can see that computing
the optimal process using a full exploration of the state space is not applicable in most
cases, as the time taken by the computation exceeds days on rather small examples, and
even weeks for the last example. Another interesting thing that one can observe is that the
fast algorithm, although behaving quite simply, performs well in some cases (examples 1, 3,

10BZOW19] was placed here to ensure a proper rendering of the table.
HDRS18a] was placed here to ensure a proper rendering of the table.
12]VTS22] was placed here to ensure a proper rendering of the table.
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Figure 5.10: Distance to the Optimal Solution

6, 7, and 8), and even better than the other algorithms for example 8. Remarkably, the fast
algorithm is able to get such results in a very short time: less than 6 seconds in all cases but
the one in column 8. Even though it takes 55.7 seconds for this example, this is still a very
short time compared to the other algorithms, which is even more impressive as it managed
to get a better gain than all the others. However, due to its inherent simplicity, it cannot
avoid all the pitfalls (local maxima, bad task positioning, ...), and sometimes performs
badly, as in examples 2 and 5. Regarding NSGA-IT and PAES, they both obtain very good
results in all the cases, and are even able to reach the optimal in several cases (NSGA-II
in examples 4 and 6, and PAES in 3, 4, 6 and 7)."® As for the synthetic examples, hill
climbing and simulated annealing behave quite poorly in most cases, but are useful to set
a reference value against which the other algorithms can be compared. The distance to the
optimal process is summarised in Figure 5.10, in which the good performances of NSGA-II
and PAES are even clearer.

5.4 Conclusion

In this chapter, we have presented the various tools that were developed to support the
approaches detailed in the previous chapters of this manuscript. In total, these tools

13Note that obtaining a gain over the optimal is only possible because the simulation is performed only
once for the optimal process, whilst the values shown for the other algorithms are averages of all the
experiments carried out.



142 Chapter 5. Tools & Experiments

represent approximately 45k lines of Java code (the lack of precision coming from the
code shared between the different refactoring approaches). Each of these tools was used
to make experiments and empirical verifications on the feasibility, usability, and quality of
the proposed approaches. For each of them, the experiments were successful. Currently'?,
some of these tools are available online!®. The GIVUP tool is freely usable online, hosted
on a server, while the step-by-step refactoring tool is downloadable online, and has to
be installed on the user’s machine beforehand. A particular attention was paid to the
packaging and the distribution of these two tools, as they both require a lot of interactions
with their users. The remaining tools, despite being developed with the same concern of
quality than the others, were not wrapped inside a UI, but remain usable through the
command line.

14 January 23, 2026.
https://quentinnivon.github.io/pages/softwares.html
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This chapter presents several approaches and ideas that were beneficial for the thinking
and the construction of this thesis. It will mostly address the challenges encountered when
trying to model business processes from natural language descriptions, but also how recent
techniques can be leveraged to generate temporal logic formulas from text. Then, it will
give an overview of what is meant by refactoring in the existing literature, and compare
this optimisation method to other well-known ones.

6.1 Modelling

Modelling businesses processes efficiently while providing strong guarantees on the gener-
ated process has been an exciting challenge since the rise of business model notations. The
reason behind this keen interest lies in the benefits of optimising the construction of such
processes. First of all, designing a business process is a tedious and time-consuming task,
mostly because it has to be done manually, using the classical graphical tools developed
for that purpose. Second, writing such processes usually requires some knowledge of the
notation, limiting the number of capable users in a company. Lastly, the vast majority of
existing design tools does not provide any checks to assess the (syntactical and semantical)
validity of the designed processes. These three reasons mostly suffice to give insights about
the craze around automated process generation since the origin of workflow-based nota-
tions. Another topic of interest in this thesis is to provide the ability for non-expert users
to generate temporal logic properties. Interestingly, there were not many works tackling

143
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this problem in the literature before 2020, which is remembered for the explosion of large
language models. Several reasons, such as the inherent complexity of temporal logics, and
the existence of patterns for many classical applications, may have explained this disinter-
est. However, the appearance of LLMs reshuffied the cards and several researchers saw an
opportunity in their usage.

6.1.1 Generation of BPMN
The World Before LLMs

In [FMP11], the authors provide a fully implemented technique to generate business pro-
cesses from textual descriptions, based on natural language processing. According to their
study, they put the accent on four broad categories of issues that they tried to solve,
namely, syntactic leeway, which highlights a mismatch between the syntax of a text and its
semantics, atomicity, which deals with issues regarding the mapping between phrases and
activities, relevance, which is in charge of verifying the interest of keeping a given part of
the text to generate the process, and referencing, which addresses the issue of preserving
the connection between words, sentences, and the global meaning of the text. They take
advantage of the Stanford Parser [dMMMO6] to break down sentences into smaller groups,
allowing them to obtain information about the activities, the actors, and the flows relating
them. Then, they use some text level analysis based, again, on the Stanford Parser, and on
WordNet [Mil95], coupled to a homemade anaphora resolution algorithm. Based on these
algorithms, they are able to determine some relations between the elements of the text.
They also extract the eventual conditional structures described in the text, based on lists
of words characterising the possible gateways behaviours. They finally generate a BPMN
process out of all the stored information, and return it to the user. Six years later, the
author of [SV17] revisited the paper by proposing new ideas to mitigate the limitations
stated by the original authors, but did not provide a concrete solution for them.

The approach presented in [HKW18] aims at generating business processes from natural
language descriptions. Prior to the apparition of LLMs, extracting structured, valuable
information from a textual description required alternative mechanisms. In this approach,
the authors present a spreadsheet-based approach, in which the original description is
analysed and used as a basis to create a spreadsheet composed of the elements of the
process, that are, the names of the activities, their order, their condition of execution, and
the actors performing them. To obtain this intermediate representation, they first extract
the actors, or participants, from the text. To do so, they rely on a line-by-line analysis of
the description, where a sentence is mapped to a syntax tree representation highlighting
the grammatical type of each word composing it. Then, if the analysis returns one or
several words, they are compared against a list of plausible words, and kept if they belong
to this list. In a second step, they make use of subject-verb-object extraction techniques to
retrieve the names of the activities. Finally, they perform a last analysis of the description
to find keywords indicating the existence of possible gateways. For instance, the “if [...]
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else” construct will lead to the creation of an exclusive gateway. Once the spreadsheet
is complete, they make use of a Python library to generate the corresponding BPMN
diagram. The authors conclude the paper with a case study illustrating the approach on
an example. This approach provides interesting results on the example presented by the
authors. However, as all pre-LLMs approaches, it suffers several limitations. Notably,
the description requires to be well-structured, and to contain the right keywords to be
interpreted correctly. Also, the authors do not provide support for loops, or complex
structures such as unbalanced workflows.

The Sketch Miner tool [ISP20] combines notes taken in constrained natural language with
process mining techniques to automatically produce BPMN diagrams in real-time. To do
so, the authors designed a Domain-Specific Language (DSL), along with its corresponding
grammar, in charge of capturing the largest subset of the BPMN syntax, while using a
limited number of textual constructs, in order to make it easy to understand, learn, and
remember. The user must then write a textual description compliant with the grammar
supported by the DSL. A DSL parser is then in charge of extracting traces from this
description. These traces are then fed to a process mining algorithm, which is in charge
of (re)generating the structure of the BPMN process. This raw representation is finally
enriched by roles, task names, and events, that are extracted directly from the original
descriptions, using annotations supported by the grammar. The process is finally rendered
and returned to the user. The authors of this approach proposed a clever solution for solving
the problem of business process generation from natural language. However, similarly to
the previously presented approaches, their approach required a structured input, along
with a deep knowledge of the designed grammar.

In [FSZ21], the authors present an approach aiming at modelling business processes in
a semi-automated way. This approach takes as input a set of partial orders, which is a
set of couples of dependent tasks. These couples must be compliant with two rules for
the corresponding BPMN process to be generated. Then, the authors introduce a notion
aiming at representing a business process in a simple way, called abstract graph. This
abstract graph is a representation of a business process without any explicit control-flow
element. Once this abstract graph is generated from the partial orders, it is given to the
user who can refine it by, for instance, adding a new node to the graph in order to mimic
an exclusive split gateway. Finally, when the user is done modifying this abstract graph, it
is transformed to BPMN using a dedicated algorithm. The authors also provide a tool for
this approach, presented in [CFSZ22]. Contrarily to our approach, the one presented by
the authors is not fully automated, and does not provide support for loops or unbalanced
gateways.

First Insights of LLMs Usage

In [BDG22], the authors make use of in-context learning [Bro20] and pre-trained language
models [QSX120, WLW™'23] to extract structured information from a textual description
of a business process. This structured information consist of entities (i.e., tasks) and
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participants, i.e., the actor performing the task. To perform this extraction, they rely on a
series of exchanges with the PLM (here GPT-3) which ends when all the desired elements
and the relationships between them have been retrieved. An exchange, or prompt, consists
of four elements: (i) a question regarding the elements of the description that GPT should
focus on, (ii) contextual knowledge which provides information to GPT about the BPMN
language, (iii) examples of potential answers to eventual questions, and (iv) the textual
description of the process-to-be. Once it receives this crafted prompt, GPT “thinks”, and
returns a detailed answer. Based on this answer, and on its importance with regards to
the next prompt (i.e., does it contain necessary information to ask the next question?),
the next prompt is crafted, and sent to GPT. Following this schema, GPT is prompted
repeatedly until obtaining all the desired information. The authors tested their approach
on 7 descriptions coming from the PET dataset [BvdAD"22], and obtained promising
results regarding the extraction of such elements in terms of precision, recall, and F1-score.
However, their approach is for now limited to the extraction of tasks, actors, and basic
relationships between tasks (e.g., is a task before another?). For instance, the control flow
of the process remains unknown. Moreover, the approach does not provide experimental
data regarding the total time required to extract the information of a process. Hence, it is
hard to assess the scalability of the approach for larger descriptions. Finally, the approach
is highly dependent on human interaction, and cannot automatically generate a BPMN
process.

The authors of [FFK23] provide some preliminary results on the capabilities of (Chat)GPT
to generate models based on a precise description of it. They focus on four different types
of models, namely, entity-relationship diagrams [Che76], business processes diagrams, UML
class diagrams [BRJ05], and Heraklit models [FR21|. To increase the quality of the result
returned by GPT, they rely on two different techniques. First, they use prompting to
provide some key information about the targeted model to GPT, which basically gives
it some contextual knowledge of the situation. Then, they created their own textual
representation of each model, using the JSON format. This representation has the main
benefit of reducing the inherent complexity of each of these four models, which are mostly
originally written in XML, an unnecessarily complex language decreasing the likelihood
of GPT to generate a valuable result. Then, they prompt GPT with (i) the full, detailed
explanation of the model, (ii) the complete description of the expected output format, (iii)
the textual representation of the model, written in natural language, and (iv) a complete
scenario detailing the expected behaviour of GPT. As a response, they obtain from GPT
a representation of the model that is valid with regards to the provided metamodel. Let
us now restrict the focus to BPMN. For this representation, the authors provide support
for tasks, parallel gateways, and exclusive gateways for which splits must have exactly one
incoming flow and two outgoing flows. Loops are not (yet) handled by the approach. For
a short textual description of a BPMN process, the results are promising as they are able
to produce a JSON representation of the BPMN process that is conform to the textual
description. However, they do not provide further experiments on other (more complex)
processes.
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In [KBK*23], the authors present the concept of conversational process modelling, which
“describes the process of creating and improving process models and process descriptions
based on the iterative exchange of questions/answers between domain experts and chat-
bots”. They apply this concept to four application scenarios related to the lifecycle of
BPMN processes, for which they identify the key usages for which a chatbot could be help-
ful. The first one, named process discovery, consists in generating a BPMN process from a
textual description of the requirements, which is commonly performed by experts. For this
scenario, they highlight three key usages of a chatbot: (i) gathering of process descriptions,
(ii) production of the process model from the description, and (iii) assessment of the pro-
cess quality. The second one, named process analysis, concerns quantitative and qualitative
assessments of process models. For qualitative analysis, the key usage of a chatbot could be
to assess the validity of qualitative assessments, such as verifying whether a task could be
automated or not. On the other hand, they state that a chatbot would not be of any help
to determine the validity of quantitative assessments, such as the optimality of a process.
The third one, named process redesign, consists in applying existing redesigning techniques
in order to improve the quality of the process. Providing such redesign techniques is a
suitable task for a chatbot. The fourth and last one, named process implementation or
process monitoring is left as future work as it would require additional tools in addition to
the chatbot. They thus evaluated existing LLMs (GPT-1, GPT-2, GPT-3 and GPT-3.5)
on their ability to perform such conversational modelling tasks, based on three research
questions and seven KPIs. Their conclusion shows that such large language models were
suitable for performing such tasks, and will be even more in the future years with the
raise of more powerful models, as their experiments show better results for the last models
compared to the first ones.

In [VBM23], the authors present several opportunities regarding the capabilities of LLMs
to tackle some existing challenges appearing at every stage of the lifecycle of business pro-
cesses. They focus on six stages of the lifecycle of a business process, namely identification,
discovery, analysis, redesign, implementation and monitoring. For the identification phase,
they give insights on how LLMs could be used to identify the different processes that
take place in a company, based on unstructured documentation. For the process discovery
phase, they highlight the fact that LLMs are powerful at summarising text, and valuating
the most important elements of a text. They also discuss the possibilities of interacting
iteratively with the LLMs by using, for instance, chatbots. For the analysis phase, they
state that LLMs can help users by identifying some issues that have a tendency to be
repeated. They go even further by questioning whether LLMs could be helpful to localise
the source of the issue. For the redesign phase, they discuss the possibility that, given
sufficiently precise inputs, LLMs could be able to provide insightful structural modifica-
tions of the process in order to mitigate incorrect behaviours, or optimise the process with
regards to a given task. For the implementation phase, they describe how LLMs could be
used to generate textual explanations of business processes, or how they could behave as
valuable chatbots or even process orchestrators by calling APIs and ordering tasks. For the
monitoring phase, they present an idea of using LLMs as dashboards chatbots, in order to
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give the possibility to the user to observe not a classical, monolithic and possibly partially
unsuitable dashboard, but something precisely adapted to her/his needs.

LLM-Based Model Generation

In [KBSvdA24a], the authors present an approach designed to generate automatically pro-
cess models from their corresponding textual description. They apply several successive
(and potentially iterated) steps to generate the process. First, the user has to provide a tex-
tual description of the process-to-be. This description is then reworked and enriched with
several information to craft the best possible prompt, guiding the LLM towards the gener-
ation of a valid, representative model. The prompt thus contains, along with the original
description, a role [XYL*25], some knowledge on the expected output structure [MIT23],
and some examples of correct [Bro20] and incorrect [MIST24] return values. Although
having become classical concepts in prompt engineering, let us detail the additional infor-
mation provided in the context of this work. The role of the LLM is here to behave as
an expert in process modelling, familiar with the classical constructs, and to fill any gap
in the provided description. The knowledge given to the LLM is mostly the one of the
POWL language [KvZ23], a format introduced by the authors in a previous work. More
precisely, the LLM is asked to generate code snippets compliant with functions imple-
mented by the authors with the goal of generating a POWL workflow in the end. The
examples provided to the LLM are adding precisions specifying what is a good example
(i.e., how the POWL workflow should look like based on an initial description), and what
is a bad one (for instance, that a process violating the irreflexivity rule is incorrect). To
provide a result, they rely on internal sanity checks to assert that the generated code is
compliant with the implementation, and, if not, perform some new exchanges with the
LLM until obtaining a correct code snippet. The generated model is then returned to the
user who has the possibility to provide feedback aiming at correcting the model, based on
an error-handling loop. The authors implemented their approach in the form of the online
tool ProMoAl [KBSvdA24b], which was compared to our approach in Chapter 5.

In [EAAT24], the authors present NaLa2BPMN, a tool aiming at generating business
processes from natural language descriptions. Their approach is quite similar to ours in
terms of expected results. The generation is performed by several successive steps, aiming
at retrieving all the components of the process. This is ensured by several successive LLM
prompts. These prompts share a common structure consisting of a role play field, a context
field, a task field, a specific instructions field, an output format € erxamples field, and a
prompt input field, each providing some context-specific information in order to improve
the quality of the LLM’s answer. The first exchange with the LLM asks it to reformulate
and possibly complete the original user description. According to the authors, this first
step has the benefit of enhancing the entities extraction accuracy, which comes in the next
steps. From this new version of the description, they ask the LLM to extract activities,
along with start and end events, from the description. Once they obtain the names of
the activities, they ask the LLM to rephrase the description by replacing the portions of
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text describing these activities by their names. Then, they ask the LLM to provide the
relationships between the tasks of the process, potentially several times in case of detection
of structural inconsistencies. Finally, they get the branching relations from the LLM, in
terms of pairs of parallel elements. From all of these information, they perform several
algorithmic steps aiming at inserting split and merge gateways, along with eventual loops.
The authors implemented their approach in the form of an online tool which was compared
to our approach in Chapter 5.

Non-Textual Input Approaches

The authors of [SvdALS23] tackle the problem of automatic generation of business pro-
cesses from another point of view. Instead of the textual description used as input in all
the approaches that we focused on, they take as input a graphical representation of the
BPMN process, with the particularity of being hand-drawn. They first present the three
specific challenges related to this representation, namely, the shape recognition, the label
recognition, and the edge recognition, along with more general challenges raised by this
approach. Generically speaking, these challenges are inherently related to the inconsis-
tency of the drawings (e.g., lines may not be straight although they should be), coupled to
the similarity of certain elements of the BPMN notation (e.g., start, intermediate, and end
events, which differ only by the thickness of their line, or by the number of lines composing
them). To solve these problems, the authors first apply a resizing of the image, in order to
make it 1,333 pixels long, length required by the Faster R-CNN network [RHGS15] that
they use, and which is in charge of detecting the objects contained in the image. Once all
the objects have been detected, they perform labels detection to acquire the names of the
tasks. To do so, they make use of off-the-shelf optical character recognition (OCR) [SSLO3].
To maximise the performances of their approach, along with the quality of the resulting
BPMN process, they trained their models on images accompanied by ground-truth anno-
tations describing exactly the elements of the process. Finally, they return the generated
process to the user.

The authors of [MBPS24] propose a method for generating business process models from
an audio representation of the process. This representation is then converted to text with
the help of the Whisper model [RKX"22], which performs speech to text recognition and
transformation. Once translated to text, the description must be adjusted in order to
comply with an active first-person narrative voice, in which the process steps are explained
in a sequential chronological order. It must also conform to some grammar rules defined
by the authors. The transformation step may require human interventions to control and
potentially alter the generated process, to make it compliant with the needs. The natural
language processing step is performed by the spaCy model [HM17], which is useful for
its capability of understanding the german language, which is the language adopted in
this approach. The experiments, conducted on two processes, show that their approach is
able to detect the same number of BPMN elements (activities, flows, events) than in the
manually drawn process. However, no information is given on the similarity of the process



150 Chapter 6. Related Work

Used Supported Constructs Tool Structured| Semantics | Number of
Technique X | + |Loops‘linhalancing Availability| Input |Preservation|Experiments
b
[FMP1L, svi7]| o Lb Stanford © X X v ? 10
Parser, Wordnet
NLP, SVO Detection,
A ’ ’ ?
[HKW18] Spreadsheet-Based I d X v ’ 1
[ISP20] HDSL, Process l\'lining| v | v | v ‘ v ‘ v ‘ v ‘ ? | 30 ‘
Partial Orders
alaly - ) 2
[FSZ21] Classical Algorithmic X X v v !
[KBSvdA24a] | LLM,POWL |V |v | v | X v x| X | 2 \
[EAA*24] LLM, Refinement VAR X v X P 3
Steps
Qur approach LLM, é{::izemem VIV v v X v ~ 200

Table 6.1: Comparison of Similar Modelling Approaches

in terms of syntax or semantics.

Summary and Discussion

The approaches that emerged before 2020 opened the door and paved the way to the
modelling and generation of business processes from natural language. However, the advent
of LLMs in the 2020’s have made almost all these techniques obsolete. Indeed, most of
them were using old-fashion natural language processing techniques, thus adding many
constraints to the original description which had, for instance, to be compliant with some
dictionaries. Then, the pioneer works based on LLMs showed that these tools could be
powerfully used to tackle this challenge. Although they remained quite preliminary, they
provided several precious advice and illustrated numerous actual challenges that had to
be faced in order to take advantage of LLMs. Finally, the most recent works presented
several ways of solving this problem, and even transversal approaches based on a different
input. The approaches comparable to the one presented in this thesis were reported and
succinctly compared in Table 6.1. For each approach, the table presents the technique that
is used (Column 1), the supported constructs (Columns 2, 3, 4, and 5), the availability of
the tool (Column 6), the requirements regarding the structure of the input (Column 7),
the positioning of the approach with regards to semantics preservation (Column 8), and
the number of experiments performed (Column 9).

Overall, we showed in the experimental chapter of this thesis that our approach outper-
formed the (available) existing ones both in terms of accuracy of the generated process,
and execution time of the tool.
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6.1.2 Generation of LTL

In [FC23], the authors present NL2LTL, a Python package aiming at translating natural
language to linear temporal logic. Their approach converts text written in natural language
into LTL by making use of patterns in the form of a list that can be enriched by the user
beforehand. The natural language processing engine (either Rasa NLU [BFPN17] or GPT)
is then prompted, and returns several possible properties, which are ranked by confidence.
They also provide some filtering of the result to provide the best candidates to the user,
because the patterns that they defined may not be independent (i.e., they may overlap).

In [CHM*23], the authors describe a framework for translating unstructured natural lan-
guage to LTL. The methodology consists in decomposing the natural language input into
sub-translations. Each sub-translation corresponds to a fragment of the formula that will
be eventually crafted. This set of sub-translations and the formula can be refined by
successive prompts until the user is completely satisfied with the generated formula.

Both of these approaches, although tackling the problem of generating LTL properties from
natural language description from different angles (patterns VS successive prompts), were
not suitable in the context of this thesis for two main reasons. First, they both require
human intervention to refine or select the property to generate. This implies an important
knowledge of LTL, which is an assumption that we could not make in this thesis. Second,
they both state that the generated property is, in some cases, incorrect with regards to the
input description (i.e., it does not precisely exhibit the specified behaviour). In the context
of our approach, we must ensure the correctness of the property with regards to its textual
description. This is mainly why we decided to focus on a fine-tuning based approach mixed
with patterns, as we thought it was giving a good trade-off between verification possibilities
and accuracy.

6.2 Refactoring

Despite being frequently found in the literature, the term refactoring is evasive and may
have several significations. In the context of business processes, the literature shows that
it tends to significate “any modification of a business process that eventually optimises it”.
However, the notion of optimisation is wide and uncertain. For this reason, we will start
this section by presenting works that considered refactoring as qualitative improvements of
the process. Then, we will present some works that aim at optimising business processes,
but which were approached from a different angle. Finally, we will present the work that
is the closest to the approaches detailed in this thesis, and which served as thinking basis.

Syntactic Refactoring

The authors of [SMO7] present six common mistakes made by developers when modelling
with BPMN. Each of them is subject to a refactoring case detailing both the bad prac-
tice(s) and the one(s) that should be applied in replacement, called best one(s). The first
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refactoring case concerns inconsistent naming of the tasks. The authors state that activity
names should not be noun-based, but verb-based and domain specific, should not contain
conjunctions such as “and” and “or”, and should be short. For gateways, they recommend
to leave the name field empty. The second refactoring case stipulates that BPMN pro-
cesses should not exceed a certain size, and that up to a certain threshold, they should
be divided in sub-processes providing the possibility of decreasing the number of visible
elements. The third case focuses on gateways, and advices, for instance, to always use
them for branching/merging, in order to explicit the control-flow. The fourth case deals
with inconsistent use of events, stating that events should not be repeated. Case 5 details
how loops should be marked and extracted from the process as unique entities, in order
to mitigate the risk of incomprehension. Finally, case 6 describes some common mistakes
made when designing graphically a BPMN process, such as non-straight or non-centered
flows, or inconstant object sizes.

The authors of [DGKV11] propose a technique for detecting refactoring opportunities in
process model repositories. They present four refactoring opportunities. The first one
corresponds to a situation where two activities are considered to be the same, but have
different labels. This observation is made by a human, and should lead to a renaming of
the activities. The second refactoring opportunity consists in analysing fragments of the
process and assess their similarity. If two fragments are identical, they should be extracted
and replaced by a single subprocess. The third opportunity is also linked to this notion of
fragment, but concerns fragments partially composed of identical activities and non-similar
activities. In such a case, they propose to gather the fragments and specify that the non-
similar activities should be skippable. The last opportunity concerns fragments of the
process containing activities said “mildly similar”, that are, activities with different names
and business object of application, although having a similar goal. Similarly, in this case,
a subprocess should be created, containing all the activities. To identify such similarities
in the process, they transform it into a structure called Refined Process Structure Tree
(RPST) [VVKO08], decomposing the original process in the so-called fragments. They then
define three metrics computable on this structure aiming at quantifying the similarity of
each two fragments of the process. Based on these values, they apply their refactoring
techniques.

IBUPROFEN [FRPCP13] is a graph-based refactoring approach. It consists of ten algo-
rithms grouped in three categories: mazimisation of relevant elements, fine-grained gran-
ularity reduction, and completeness. The first algorithm of the first group basically trans-
forms the graph version of the BPMN process into a connected graph by removing all the
isolated nodes that it may contain. The second algorithm of this group aims at removing
what the authors called sheet nodes, which are gateways or intermediate events having no
successors. The third algorithm of this group merges the connected gateways of same type
into a single gateway. Algorithm 4 basically removes unnecessary flows connecting already
connected tasks, while algorithm 5 removes unnecessary gateways, i.e., split gateways with
only one outgoing flow. Considering the second group, algorithm 1 creates compound tasks,
which are replacing tasks followed by several subsequent tasks connected by a round-trip
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sequence flow. Algorithm 2 is in charge of combining data objects that are used by a
unique task into a single object. Finally, for the last group, algorithm 1 inserts start and
end events respectively before and after the starting tasks of the process. The second al-
gorithm of the last group basically inserts gateways between tasks when a task either has
several predecessors or several ancestors. To conclude, algorithm 3 refines the names of the
activities. The authors also evaluated their tool in an industrial context, and published
their results in [PCFRP19].

Non-Fixed Resources Approaches

Works such as [DRS19, DRS21] tackle the optimisation of business processes from another
angle. As we have seen in this thesis, a possible way of reducing the execution time of
a process consists in adjusting the number of available replicas of the resources needed
by the process to execute. In these two works, the business process is encoded in the
Maude rewriting logic [CDE*07]. In [DRS19], the authors focus on a static analysis of
several metrics computed by executing the process with a given workload. Based on these
metrics, they apply different existing optimisation algorithms to compute the optimal pool
of resources under the given circumstances. In [DRS21], the approach mostly differs on the
way the analysis is performed. Indeed, it is no longer a static analysis performed after the
run of the process, but a dynamic analysis aiming at modifying the number of available
resources accessible by the process at runtime. This analysis is based on four different
strategies. The first one, called usage-based strategy, and performed periodically, takes into
account the recent usage of a resource to decide on whether to allocate new instances of
this resource or not. The second one, called queue-based strategy, similar to the previous
one, also verifies whether the average number of pending requests of the given resource
is inside some defined bounds. If not, some more replicas of the resource are allocated.
The third one, called prediction-based strategy, makes use of a copy of the process being
executed, that is executed in advance for a windowed period of time following the one being
analysed. This analysis helps detecting which tasks will be executed, and, consequently,
which and how many resources will be required. These metrics are then used to adapt the
current pool of resources. The fourth and last strategy, called combined strategy, basically
combines traits from the three previously detailed strategies, and decides to allocate more
resources based on a consensus between them.

The approach proposed in [FSZ24] is rather similar to the one presented in [DRS21].
However, the authors incorporated a predictive analysis of the number of required resources
in order to minimise the possibility of resources shortages by predicting in advance the need
of each resource for a given incoming period of time. To achieve this, they gathered the
resource usage of numerous processes previously simulated with a meaningful workload.
They then trained a deep learning model on these information, in order to make it capable
of predicting the future number of required resources a short time before the execution,
allowing to adapt the pool of resources before reaching the shortage.
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Quantitative Refactoring

The authors of [KL22] present an approach for optimising the redesign of process models.
This approach picks six out of ten improvement strategies originally introduced in [RMO5]
and provides a concrete application method for them. The approach first models the
process as a set of structural balance equations mimicking the structure of the process
(exclusive/parallel gateways), and temporal constraints, representing the tasks executed
over time. The first strategy basically makes a task optional so that it can be skipped at
runtime, by setting its duration to 0. Strategy 2 can replace a task by an equivalent one of
shorter duration to reduce time. Strategy 3 is able to merge two tasks into a single one to
benefit from its atomicity. Conversely, strategy 4 may split a task into multiple ones, and
put them either in parallel or inside a choice, with the goal of shortening the duration of
the process. Similarly, strategy 5 can select two tasks and rearrange them so that they end
up in parallel. Finally, strategy 6 is in charge of postponing activities so as to make them
executed later, if it can fluidify the execution of the process. Based on these strategies and
on the tasks of the process, they build a redesign matrix where the strategies, the tasks,
and several metrics associated to each such couple (cost, benefit, etc.) are listed. Finally,
they compute several best refactoring possibilities based on the computation of a solver
such as CPLEX [Cor13].

In [DS22], the authors introduce the concept of refactoring a business process with the goal
of optimising it, and, more precisely, its execution time. To do so, they rely on refactoring
operations defined as patterns applied to a given task to make it move somewhere else
in the process. These patterns perform in the local environment of the task, that is, its
immediate surrounding tasks, gateways, and flows. The first pattern puts a task in parallel
of the task preceding it, under the condition that these two tasks do not require the same
resource. The second pattern allows a task that follows a merge gateway to enter this
gateway. If the gateway is a parallel one, the task is put in parallel of all the tasks that
do not require the same resources to execute, and in sequence after the ones with whom it
shares resources. If the gateway is an exclusive one, the task is inserted at the end of each
path of the gateway, so as to preserve its original non-conditionality. The third pattern is
similar to the second one, except that it applies on split gateways instead of merges. The
authors also define a notion of strong flows representing flows of the process that should be
preserved by the refactoring operations. Such flows basically model causal dependencies
that should remain so as to preserve the semantics of the process. To reduce the time taken
by the exploration of the possible refactored processes, they provide a heuristic driving the
selection of the tasks to move and their movement.

Summary and Discussion

The approaches called “refactoring” that can be found in the literature are mostly driven
by motivations regarding the improvement of a business process in syntactical direc-
tions [SM07, DGKV11, FRPCP13, PCFRP19]. As they provide qualitative analyses of
the process, they can not be properly compared to our approach.
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The other optimisation methods, such as modifying the number of resources replicas made
available to the process [DRS19, DRS21, FSZ24], usually require flexibility in the budget
of the companies, as one may have to hire a new employee, or buy a new machine to fulfill
the need. Moreover, the only feature on which optimisation is possible is the number of
resources. In comparison, our method does not require any budget adjustment (usually
an increase), and provides more flexibility in terms of optimisation (one can change the
numbers of resources, or keep the same amount of resources but improve the way they are
used within the process).

Finally, the quantitative refactoring approaches mentioned lastly are closer to our proposal.
In the first one [KL22|, some modifications of the process could not be supported by our
approach. For instance, by splitting a task into several new tasks, there would be no proper
way of ensuring the preservation of the dependencies of the process, nor of its semantics. In
the second approach [DS22], processes are executed only once (single instance), and only
one replica of each resource is available. These assumptions simplify part of the reasoning
and allow the definition of patterns such as the ones presented in the paper, where a task
cannot be put in parallel of another if they both require the same resource.

The approaches that we proposed in this thesis handle several instances of the business
process being run at the same time, along with multiple replicas of the available resources.
Moreover, they preserve the trace semantics of the process, as demonstrated in Chapter 4.
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Chapter 7

Conclusion & Perspectives

In this thesis, we tackled two major challenges of the business process management field:
the modelling of the processes, and their optimisation via structural refactoring. For these
two research questions, we proposed several approaches aiming at simplifying the mod-
elling step, and optimising the business processes of the companies. On the modelling
part, the approach that we developed consists in automatically converting a textual de-
scription into its corresponding BPMN process, while preserving the constraints that it
contains, described in natural language. To perform this generation, the tasks that should
appear in the process are extracted from the textual requirements, along with their order-
ing constraints. Then, a graph comprising all the sequential constraints of the process is
built. This graph is converted to an equivalent BPMN representation, and enriched step
by step with all the remaining constraints. The resulting BPMN process is then eventually
returned to the user. We implemented this approach in the form of a tool that we used for
tests and evaluation, with the help of both experts of the BPMN community and novice
users.

One step forward in the direction of ensuring the correctness of the generated business pro-
cess consisted in providing an extension of that tool allowing one to verify some behavioural
properties based on their natural language description. This extension of the original work,
called GIVUP, showed very good results both in terms of accuracy and performance.

We also proposed three different techniques to optimise business processes enriched with
time and resources, all based on refactoring. Although being refactoring-based, these
approaches differ in the way they modify the structure of the process. The first one performs
a global refactoring of the process, and verifies whether this new version is optimal or not.
If not, it applies successive steps backward in order to avoid latencies, while preserving
some optimisation. The second and the third approaches address the problem the other
way around, by performing several successive small refactoring steps, guiding the process
towards an optimised version by following several possible criteria. All of these approaches
were implemented and tested on numerous examples. Their evaluation showed satisfactory
results both in terms of optimisation and computation time.

157
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7.1 Perspectives

7.1.1 Modelling

The work that we proposed on modelling of business processes offers several axes of im-
provement.

On the short-term, an idea could be to cross-check the expressions returned by GPT with
several other “witness LLMs”, which could for instance rate the expressions with regards
to the original description. By doing so, some expressions could be kept, some others could
be modified, and some others removed. The goal of such an approach would be to reduce
the number of erroneous constraints in the generated expressions, consequently leading
to more accurate generated processes, and thus better results. Another thing that would
be doable in a reasonable time would be to increase the size of our training dataset and
moving forward to newer versions of GPT. This would be likely to significantly improve
the quality of the generated process.

By enlarging the time window, we could also try to find solutions to add more information
or data during the generation phase. For instance, it could be interesting to be able to
extract resources and durations from the description, so as to reduce the gap between
the generated process and a process that is suitable for applying refactoring operations.
Regarding the quality of the process itself, it could be interesting to involve more the user,
through exchanges regarding the position of the tasks, or feedback loops to update the
process or the expressions corresponding to it.

By considering even further times, it could be interesting to be able to give advices to
the modeller at design time, in order to improve the quality of the process. Such advices
could be based, for instance, on the best practices in terms of modelling, in order to obtain
the most adequate and understandable version of the process. Another interesting thing,
rather complex in the context of our approach, would be to enlarge the supported BPMN
syntax to, for instance, be able to deal with inclusive gateways, sub-processes, or even to
generate more complex workflows such as collaboration diagrams.

Finally, if we widen a bit our field of vision, we could think about more transversal tech-
niques, such as techniques to synchronise the changes made to the generated model and
its (obsolete) description.

7.1.2 Verification

Regarding our work on behaviour verification, there is one main perspective that stands
out: increasing the number and the complexity of the supported patterns. Indeed, our
current fine-tuned GP'T model recognises only nine rather simple patterns. This is only a
few, among all the possible behaviours that can be described using temporal logics. Thus,
finding new widely used patterns would enhance our tool and make it more suitable for
real-world verifications.
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7.1.3 Refactoring

Despite the promising results offered by our refactoring approaches, there are several areas
for improvement and future research.

One thing, that could be thought on the short-term, could be to explore other optimisation
techniques for cases where refactoring can not be applied. For instance, if the structure of
the process cannot be changed, and if the pool of resources is fixed, it could be interesting
to try to schedule the tasks of the process differently at runtime, according to different
strategies, in order to fluidify the execution of that process.

In a longer term, another simple—yet complex to apply—idea would be to find better
heuristics in order to both shorten the time taken by the approach to complete, and im-
prove the quality of the refactored process. Additionally, the exploration of more advanced
optimisation algorithms, such as hybrid metaheuristics, or reinforcement learning tech-
niques, could further improve the efficiency and effectiveness of the process refactoring.
These algorithms could be tailored to better navigate the solution space and handle the
trade-offs between conflicting objectives. To make the model more realistic, another option
could be to enlarge the supported BPMN syntax, or to improve the model of resources to
be able to handle, for instance, resources that are not used all the time, or resources that
can be produced or consumed.

Two of the main limitations of the current approach are its usage of sequence graphs as
underlying structure, and its reliance on simulation to evaluate process candidates. While
sequence graphs inherently facilitate the verification and the preservation of the seman-
tics of the process, they also force the original process to be balanced, which is a strong
assumption in the real-world. Thus, trying to get rid of the sequence graphs while still
guaranteeing the preservation of the semantics of the process is of prime interest. Similarly,
although providing accurate performance metrics, simulation can be computationally ex-
pensive, especially for large and complex processes. Future work could explore alternative
evaluation methods, such as analytical models, or machine learning-based predictors, to
reduce computation time while maintaining accuracy. For example, the authors of [ALP23]
propose a method to estimate the worst-case execution time of a process model using an
SMT solver. Even though their method works for a single instance, and cannot handle
loops, it could be a good starting point to develop a more general approach that could be
used in our context.

By going a bit out of the scope of the proposed approach, another potential direction for
future research is the extension of the approach to handle dynamic and adaptive processes.
Real-world business processes often operate in environments where conditions and require-
ments change over time. Incorporating mechanisms to adapt the refactoring strategy in
response to such changes could significantly enhance the applicability of the approach.
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Appendix A

Example of Prompts

A.1 Example of System Prompt

Component

Prompt Content

Agent
Role
Expected
Output
Format

Example
of Correct

Output
Advice of

Undesired

Behaviour

You are a helpful assistant which aims at analysing and extracting the
relationships that exist between the different tasks of the textual
description that is given to you.

Your answer will be composed of one or several lines starting with the
‘-’ symbol containing each an expression representing one or several
relationships between the tasks. The tasks that you discover can be
related to each others in five different ways. (1) The tasks can be
ordered sequentially, meaning that some of them have to be executed
before some others. In such a case, they are separated by the ‘<’
symbol. (2) The tasks can be mutually exclusive, meaning that only
one of them can be executed. In such a case, they are separated by the
‘| symbol. (3) The tasks can be parallelisable, meaning that they can
all execute simultaneously. In such a case, they are separated by the
‘%’ symbol. (4) The tasks can be repeated, meaning that they can be
executed several times during the lifecycle of the process. In such
a case, they are put between parenthesis in which they are separated
by a coma, and the ‘*’ symbol is put next to the closing parenthesis.
(56) When no information is given about tasks, when you need to list
tasks without giving their relationship, or when you do not know how
some tasks are related, you can separate them using the ‘,’ symbol.

For instance, from the description ‘I want to do A and B in parallel,
followed by C or D’, you can return the expression ‘- (A & B) < (C | D)’.

Lastly, you must not use any other symbol than those listed before.

The system prompt contains four identifiable parts, related to the four best prompting
practices that can be found in the literature. The agent role specifies the role that the
agent should take [XYL'25], the expected output format describes in details how the agent
should format its output [MIT23], the ezample of correct output gives the agent an example
of correct answer corresponding to a given correct input [Bro20], and the advice of undesired
behaviour tells the agent what it should not do, or provide as answer [MIST24].
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A.2 Example of User Prompt

Task A followed by task B in parallel with task C followed by task D.

The user prompt is an example of description of a business process that a user may write.

A.3 Example of Assistant Prompt

\n- (A <B) & (C<D)

The assistant prompt is the answer expected by GPT according to the user prompt. Note
that, for practical reasons, this prompt can be decomposed in several lines starting by the
character ‘\n’ followed by the character ‘-

A.4 Example of Training/Validation File Content

Role Prompt Content
System Full prompt of Appendix A.1.
User CollectGoods is followed by PrepareParcel, itself followed by Payment.
Then, either DeliveryByCar or DeliveryByDrone execute, but not both.
Assistant - CollectGoods < PrepareParcel < Payment
- (CollectGoods, PrepareParcel, Payment) < (DeliveryByCar |
DeliveryByDrone)

A typical training or validation file contains the system prompt corresponding to the full
prompt given in Appendix A.1, a user prompt (i.e., an example of description), and an
assistant prompt (i.e., the expressions corresponding to the description).



Appendix B

Fine-tuning Metrics

During its fine-tuning, GPT provides several metrics that one can analyse to understand
how well the training is going. The two main metrics that we used to assess the quality
of the resulting fine-tuned model were its accuracy and its loss. The accuracy, depicted in
Figure B.1, shows how good the fine-tuned model is performing both on the training and
the validation datasets. The closer its value is to 1, the better it is. On the other hand,
the loss, depicted in Figure B.2, basically describes how different the output value of the
model is from its expected output. Thus, the closer its value is to 0, the better it is.

Figure B.1: GPT Fine-Tuning Accuracy over Training Iterations

Figure B.2: GPT Fine-Tuning Loss over Training Iterations
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